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1. Introduction. The definition and selection of Young’s, shear and bulk modulus values for soils 
is generally well-established. The same cannot be said for Poisson’s ratio. Indeed, the importance 
of this elastic parameter has largely been unappreciated [16]. Although the use of approximate or 
“typical” values of Poisson’s ratio in soil mechanics applications may not necessarily pose significant 
difficulties, the value of Poisson’s ratio undeniably affects the magnitude of elastic deformations of 
soil masses subjected to static and dynamic loading. This paper reviews some key issues associated 
with Poisson’s ratios for soils. Although some of these issues have been discussed in previous papers 
and books, the focus has traditionally been on isotropic elastic material idealizations. While important 
findings related to isotropic idealizations are presented in this paper for completeness, the discussion 
emphasizes the evolving topic of transversely isotropic elastic material idealizations. 

2. Basic Definition and a Historical Note. Poisson’s ratio is defined as the negative of the ratio of 
transverse strain to the axial strain in an elastic material subjected to a uniaxial strain. In the mechanics 
of deformable bodies, the tendency of a material to expand or contract in a direction orthogonal to a 
loading direction is commonly referred to as the “Poisson’s effect” [16]. 

Poisson’s ratio is named after the French mathematician and physicist Simeon Denis Poisson 
(1787-1840), who first described this elastic constant in 1829 [57]. Gercek [16] and Greaves et al. [20] 
give historical details pertaining to the definition of Poisson’s ratio. Biographical information for S. D. 
Poisson can be found in books by Timoshenko [64] and Todhunter and Pearson [69]. 

3. Elastic Constitutive Relations. For a general homogeneous, anisotropic linear elastic (Hookian) 
material, in the absence of initial strains and stresses, the constitutive relations, in “direct” vector-
matrix form, are given by 

                                                     
                                                                  δεe=A δσ’                                                          (1)

where A is a symmetric (Nrowb*Nrowb) matrix of compliance coefficients characterizing the material,   
and   are (Nrowb *1) vectors of infinitesimal elastic strain and effective stress increments, respectively, 
and Nrowb is the number of stress and strain components (for three-dimensional analyses, Nrowb= 6; for 
torsionless axisymmetry, Nrowb= 4; for plane strain analyses, Nrowb= 3). For three-dimensional analyses, 
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where ,, 1312
ee   and e

23  are engineering shear strains, and the superscript T denotes the operation of 
vector transposition.  

Written in “inverse” vector-matrix form, the constitutive relations are given by generalized Hooke’s 
law; viz., 

                                                                                            (2) 
 

where D, which is the inverse of A, represents the symmetric (Nrowb ∗ Nrowb) matrix of elastic moduli.  
Due to symmetry, in their most general form, A and D contain 21 independent coeffcients that 

characterize the elastic material. Fortunately, however, most of the important engineering materials 
possess some internal structure that exhibits certain symmetries that reduce the number of required 
coeffcients. Books by Love [49] and Lekhnitskii [44] give additional details pertaining to this subject. 

4. Consideration of Elastic Isotropy. Most natural soils exhibit some degree of anisotropy due to 
their manner of deposition, particle shape, and stress history [8; 3; 18; 17]. For example, sedimentary 
soils, which are typically deposited under gravity, possess different properties in the direction of 
deposition as opposed to the planes normal to this direction.  

Traditionally, however, the elastic response of soils has been assumed to be isotropic. This was 
primarily done for two reasons. First, was a desire not to overly complicate analytical formulations. 
Second, was the lack of suitable experimental equipment to measure the elastic constants necessary to 
characterize the anisotropic elastic response of soils. The consideration of elastic material idealizations 
thus begins with the special case isotropic elasticity.  

5. Isotropic Elastic Idealizations. Limited experimental results on several different sands [60] and 
on kaolin clay [37] indicate isotropic behavior upon unloading, even when the strains during loading 
indicated anisotropic behavior. Results for sensitive clays also showed nearly isotropic elastic behavior, 
though the associated plastic stress-strain relations were, however, anisotropic [71]. Citing the above 
results for sands and clays, Lade and Nelson [43] concluded that although microscopic elastic behavior 
of geomaterials is randomly anisotropic and non-homogeneous, such materials can be considered as 
macroscopically homogeneous and isotropic.  

To represent the constitutive relations in vector/matrix form, the compliance matrix appearing in 
Equation (1) is written in terms of (3∗3) sub-matrices, giving 

 

                                  
                                         (3) 

Expressing an isotropic elastic material in terms of the “drained” Young’s modulus 'E  and 
Poisson’s ratio ' , 

    
 
  
 
       
       
       

  and      
 
  
 
         

         
         

          (4) 

 
where it is noted that  1211665544 2 AAAAA  .  

If the isotropic elastic material is instead represented by the drained bulk modulus 'K  and the shear 
modulus G, then 11A  and 22A  become 
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6. Orthotropic Elastic Idealizations. Over the last 35 or so years, substantial progress has been made 

in the development of experimental techniques that facilitate the measurement of the aforementioned 
elastic constants. Such measurements confirm that soils indeed exhibit elastic response, albeit at low 
strain levels, and that this response is typically anisotropic. Consequently, anisotropic elastic material 
idealizations for soils have become significantly more tractable.  

The description of anisotropic elastic materials is complicated by the fact that elastic moduli  'iE  are 
associated with a single direction of stretch, and thus require only a single subscript. The classification 
of Poisson’s ratios  '

ij  and the shear moduli  ijG  depends upon pairs of orthogonal directions. 
Consequently, these elastic constants require a pair of subscripts; these subscripts do not, however, 
follow the rules associated with indicial notation. The consideration of anisotropic elastic material 
idealizations begins with the special case of orthotropic elasticity.  

Consider a material through each point of which pass three mutually perpendicular planes of elastic 
symmetry. If similar planes are parallel at all points in the material, then taking the 
   zyxxxx ,,,, 321   coordinate axes normal to these planes (i.e., along the principal directions) it 
follows that there should be no interaction between the various shear components or between the shear 
and normal components. Consequently, the compliance matrix has the following entries [44]: 

 

        

 
 
 
 
 
 
                           
             

             
                          

          
          
           

 
 
 
 
 
 

                                 (6) 

 
The material constants appearing in Equation (6) are defined as follows: ,, '

2
'
1 EE  and '

3E  are elastic 
moduli associated with tension or compression in the material coordinate direction ,, 21 xx  and 3x , 
respectively. These moduli are obtained under drained conditions; they are thus defined in terms of 
effective stress. The ijG  is the elastic shear modulus that relates the shear stress ij  to the shear strain 

ij , where no summation on repeated indices is implied. Finally, '
ij  is the Poisson’s ratio that is equal 

to the ratio of the lateral contraction in the jx  material coordinate direction resulting from a uniaxial 
extension in the ix  coordinate direction [44]. The Poisson’s ratios are also obtained under drained 
conditions; thus, similar to ,, '

2
'
1 EE  and '

3E , they are likewise defined in terms of effective stress. 
Symmetry of  A implies that '

1
'
12

'
2

'
21

'
1

'
12

'
2

'
21 //,// EEEE   , and '

2
'
23

'
3

'
32 // EE   . Thus, only 

nine of the twelve elastic constants entering Equation (6) are independent; i.e., 
231312

'
23

'
13

'
12

'
3

'
2

'
1 ,,,,,,,, GGGEEE  .  
Although some experimental findings [35] suggest that natural soils are elastically orthotropic, the 

difficulty associated with determining values for the nine elastic constants precludes the adoption of 
such an idealization. Instead, transversely isotropic elasticity is commonly assumed, thus reducing the 
number of elastic parameters to five.  

7. Transversely Isotropic Idealizations. Due to the manner in which natural soils are deposited, it is 
logical to expect them to exhibit approximately transversely isotropic (or “cross-anisotropic”) response. 
While this realization is not new [3; 56; 2; 19; 61], the lack of suitable experimental apparatus to 
accurately measure the five elastic constants associated with transverse isotropy has, in the past, 
precluded the use of such idealizations. More recently [29; 47; 40; 1; 53], substantial progress has been 
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made in experimental techniques that facilitate the measurement of the aforementioned elastic 
constants.  

Through all points of a transversely isotropic material there pass parallel planes of elastic symmetry 
in which all directions are elastically equivalent (i.e., planes of isotropy). Thus at each point there exists 
one principal direction and an infinite number of principal directions in a plane normal to the first 
direction [44]. Assume that the local material axes 














 ~~~~

3

~

2

~

1 ,,,, zyxxxx  coincide with the global yx,  and 

z  coordinate axes (Figure 1). Furthermore, assume that the global xx 1 - axis is taken normal to the 

planes of isotropy, with the global y  and z  axes directed arbitrarily in such planes. 
 

 
 

Figure 1: Schematic illustration of an element of transversely isotropic material. 
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where, from symmetry of A,  '''' / ntnttn EE  .  
Additional details pertaining to anisotropic elasticity for soils, including specific expressions for 

volumetric strains, response under undrained conditions, specialization for plane strain idealizations, 
and response under axisymmetric triaxial conditions are presented by Kaliakin [34].  

8. Limiting Values for Elastic Material Parameters. For isotropic elastic material idealizations, the 
drained Young’s modulus  'E  is related to the shear modulus (G) and to the drained Poisson’s ratio 
 '  through the relation  '12'  GE . No such relations are possible for anisotropic elastic 
materials, as the moduli and Poisson’s ratios become dependent upon the directions of stretch, lateral 
strain, and the directions of shear.  

The task of determining extreme values of the elastic moduli is somewhat simplified by the fact that 
such moduli depend only on a single direction of stretch (and thus require only a single subscript). 
Consequently, a detailed analysis of the extreme elastic moduli for cubic and transversely isotropic 
materials [9], and for materials with tetragonal symmetry [10] has been presented. Analytic expressions 
related to extrema of the elastic moduli have also been developed [5], as have been explicit expressions 
for the stress directions and the stationary values of Young’s moduli for triclinic and monoclinic 
materials [66] and ones for orthotropic, tetragonal, trigonal, hexagonal and cubic materials [67].  

Since they depend upon pairs of orthogonal directions (and thus require a pair of subscripts that do 
not follow the rules associated with indicial notation), the determination of limiting values for Poisson’s 
ratio and the shear moduli is more complicated than for the Young’s moduli. The following subsections 
thus discuss the extreme values of these elastic constants.  

8.1 Orthotropic Material Idealizations. Although all nine material constants associated with an 
orthotropic elastic material idealization are independent, there are bounds on the values that these 
constants can assume. For an elastic material, thermodynamics requires that the strain energy must be 
positive. This will be achieved if the strain energy per unit volume     

      is positive definite.  
Lempriere [45] appears to have been the first to investigate the limiting values for the material 

constants associated with an orthotropic elastic material idealization. Considering various possible 
stress states, Lempriere [45] deduced that the diagonal entries in A must all be positive; viz., 

                        0,0,0,0,0,0 231312
'
3

'
2

'
1  GGGEEE                                    (8) 

Noting that the elastic matrices A and D are symmetric and must be positive definite for the strain 
energy density to be positive, Ting [65] subsequently showed that, for the case of A, this condition will 
be satisfied provided that 0,0,0,0,0 5544332211  AAAAA  and 066 A . This more general and 
rigorous treatment confirmed the earlier finding of Lempriere [45] given by Equation (8).  

From the inverse form of the elastic constitutive relations given by Equation (2), Lempriere [45] 
argued that for uniaxial extensional strain states, the diagonal entries in D must all be positive. This 
leads to the following restriction on '
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The value of '
12  has a similar restriction; viz., 
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Similarly, the values of the remaining four Poisson’s ratios, not all independent, have the following 
restrictions: 
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Finally, Lempriere [45] obtained the following limiting relation: 
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Equation (13) led Lempriere [45] to conclude that 
··· all three Poisson’s ratios cannot have large positive values at the same time, as their product must 

be less than one half. If one is negative, however, no restriction is placed on the other two. 
Boulanger and Hayes [6] appear to have been the first to show that Poisson’s ratio for an orthotropic 

material can have no bounds. In such a material, even though the strain energy density is positive 
definite, Poisson’s ratio may assume an arbitrarily large positive value for one pair of orthogonal 
directions and an arbitrarily small negative value for another pair of orthogonal directions. 

Zheng and Chen [76] presented a complete characterization of the admissible sets of Poisson’s ratios 
for orthotropic materials, as well as ones with less internal symmetry. They presented a new 
perspective on Poisson’s ratios of elastic solids. By scaling the Poisson’s ratios through the square root 
of a modulus ratio, the transformed Poisson’s ratios were bounded in a closed region which is located 
inside a cube centered at the origin with a range from -1 to 1.  

In a subsequent paper, Ting and Chen [68] have shown that the Poisson’s ratios associated with 
anisotropic elastic materials can have an arbitrarily large positive or negative value under the 
prerequisite of positive definiteness of strain energy density. This is predicated on the assumption that 
the material is not subjected to any kinematic constraints such as incompressibility or inextensibility.  

8.2 Transversely Isotropic Material Idealizations. For the special case of transverse isotropy, 
selecting the global 3x -axis normal to the plane of isotropy, ''
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For the special case of transverse isotropy, Equation (13) simplifies to 
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Considering the left inequality in Equation (17) gives the following relation: 
 

    







 '

'
2'2' 2

t

n
tntt E

E                                                        (18) 

 
Adopting a more rigorous form of analysis, Pickering [56] noted that, similar to Lempriere [45], the 

necessary and sufficient condition for the quadratic form     
 
        to be positive definite is that all of 

the principal minors of A should be positive. This leads to the following requirements: 
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Pickering [56] also confirmed that 11 '  tt  (recall Eq. (14)). From one of the principal minors of 

A, Pickering [56] obtained the following relation: 
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Pickering [56] noted that, similar to ', tnt EG  and '

nE  are independent; only the Poisson’s ratios are 

bounded by the ratio '' / nt EE . 

In commenting on an earlier paper by Barden [3], Raymond [58] stated that, from a zero strain 
energy function, 
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which, except for the case of equality, is identical with Equation (20) given by Pickering [56].  

By requiring the dilation to be the same sign as the applied stress, Raymond [58] also stated that 
2/1' nt , and 

'
'

'
'1 nt

n

t
tt E

E  







                                                               (22) 

Finally, Raymond [58] stated that the shear modulus ntG  is bounded by the following inequality: 
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If EEE tn  ''  and '''   ttnt , Equation (23) reduces to 

 

     
                              

  
        

 
However, as noted by Raymond [58], since ntG  is an independent constant, the conditions ''

tn EE   

and ''
ttnt    do not automatically imply isotropy.  

8.3 Isotropic Material Idealizations. For their characterization, isotropic materials require the values 
of two material constants. Traditionally, the “drained” bulk modulus  'K  and shear modulus  G , or 

V.N. Kaliakin
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the “drained” Young’s modulus  'E  and Poisson’s ratio  '  have been used to characterize isotropic 
elastic materials. The ratios of these moduli are functions of ' ; viz., 
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Since the strain energy per unit volume     
       must positive definite, 0'E  and 0G . Thus, 

from the first of Equation (24),   0'1  , implying that 1'  . Similarly, since 0'K , from the 

second of Equation (24),   0'21   , implying that 2/1' . Thus, for an isotropic elastic material, the 

value of Poisson’s ratio must fall in the range 
2
1'1    −1.  In practice, however, '  falls into the 

more limited range of 
2
1'0   [43; 16].  

9. Experimental Determination of Poisson’s Ratios for Soils. Although a seemingly 
straightforward undertaking, the determination of Poisson’s ratios for soils is not necessarily a 
straightforward process. Different approaches are required for isotropic and transversely isotropic 
material idealizations. These approaches are now briefly reviewed. Additional details pertaining to 
these aproaches can be found in the cited references.  

9.1 Isotropic Material Idealizations. Assuming isotropic elastic response, the simplest way in which 
to experimentally determine the Poisson’s ratio of a soil is to measure the increments in lateral strain 
 32    and axial strain  1  in an axisymmetric triaxial test. From these measurements, the 
Poisson’s ratio is then computer from the relation 13 /'   . 

In practice, it is not, however, easy to accurately measure 3  in conventional axisymmetric triaxial 
testing devices. Instead, '  is determined from 1  and the increment in volumetric strain    
measured in a drained test. In particular, since 3132 2,    . Thus, 
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Dividing through by 1  gives the desired result; viz., 
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To overcome the aforementioned inaccuracies in measuring lateral strains in conventional 

axisymmetric triaxial devices, certain enhanced devices have been developed that measure both axial 
and lateral increments in the small strain range (e.g., less than 0.001%). These enhanced devices 
typically employ proximity transducers (e.g., [28]) or other special sensors (e.g., [31; 48; 26; 29]) that 
locally measure axial and lateral strains. Values of elastic parameters can also be determined using 
geophysical field and laboratory methods involving wave propagation. These involve two types of 
waves, namely surface and body waves. The surface wave of primary interest is the Rayleigh (R) wave. 
Body waves consist of compression (P) waves that propagate with velocity p , and shear (S) waves 
that propagate with velocity s .  

Equating the relation between G and s  [59] with the relation between G and the Young’s modulus 
(E) gives 
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The Young’s modulus can also be determined from the compressional wave velocity according to 
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value of Poisson’s ratio must fall in the range 
2
1'1    −1.  In practice, however, '  falls into the 

more limited range of 
2
1'0   [43; 16].  

9. Experimental Determination of Poisson’s Ratios for Soils. Although a seemingly 
straightforward undertaking, the determination of Poisson’s ratios for soils is not necessarily a 
straightforward process. Different approaches are required for isotropic and transversely isotropic 
material idealizations. These approaches are now briefly reviewed. Additional details pertaining to 
these aproaches can be found in the cited references.  

9.1 Isotropic Material Idealizations. Assuming isotropic elastic response, the simplest way in which 
to experimentally determine the Poisson’s ratio of a soil is to measure the increments in lateral strain 
 32    and axial strain  1  in an axisymmetric triaxial test. From these measurements, the 
Poisson’s ratio is then computer from the relation 13 /'   . 

In practice, it is not, however, easy to accurately measure 3  in conventional axisymmetric triaxial 
testing devices. Instead, '  is determined from 1  and the increment in volumetric strain    
measured in a drained test. In particular, since 3132 2,    . Thus, 
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Dividing through by 1  gives the desired result; viz., 
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To overcome the aforementioned inaccuracies in measuring lateral strains in conventional 

axisymmetric triaxial devices, certain enhanced devices have been developed that measure both axial 
and lateral increments in the small strain range (e.g., less than 0.001%). These enhanced devices 
typically employ proximity transducers (e.g., [28]) or other special sensors (e.g., [31; 48; 26; 29]) that 
locally measure axial and lateral strains. Values of elastic parameters can also be determined using 
geophysical field and laboratory methods involving wave propagation. These involve two types of 
waves, namely surface and body waves. The surface wave of primary interest is the Rayleigh (R) wave. 
Body waves consist of compression (P) waves that propagate with velocity p , and shear (S) waves 
that propagate with velocity s .  

Equating the relation between G and s  [59] with the relation between G and the Young’s modulus 
(E) gives 

         
 

                                                         (27) 
 
The Young’s modulus can also be determined from the compressional wave velocity according to 
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Combining Equations (27) and (28) gives 
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9.2 Transversely Isotropic Material Idealizations. The values of the small strain moduli and 

Poisson’s ratios in soils characterized by transversely isotropic elastic material idealizations can be 
determined from the results of field or laboratory tests. Commonly used field tests include the 
pressuremeter and in-situ seismic surveys consisting of cross-hole and down-hole techniques. When 
transversely isotropic shear moduli are determined in the field, the value of ntG  is obtained from a 
down-hole survey in which the shear wave propagates in the vertical direction and the particles move 
horizontally; in such tests, the shear wave velocity nt  is measured. By contrast, the value of ttG  is 
determined from a cross-hole survey, in which the shear wave velocity tt  is measured. Due to the 
difference in the modes of shear deformation, the results obtained using field tests can, however, be 
different from laboratory values [73].  

Laboratory tests commonly used to determine the small strain moduli and Poisson’s ratio values 
include axisymmetric triaxial, torsional shear, resonant column (RC), and ultrasonic tests. Such tests 
must be suitably modified in order to determine the values of all five independent parameters 
associated with a transversely isotropic elastic material idealization. The small-strain probe loadings in 
such tests are typically applied quasi-statically. The multiaxial body wave measurements in such tests 
are made using either piezoelectric transducers such as bender elements [7; 52; 46; 40; 28; 51; 21; 53] or 
other P- and S-wave transducers [4]. Using such laboratory tests allows for either direct measurement 
[36; 29; 15; 14] or indirect determination [39; 41; 47] of all five independent parameters associated with a 
transversely isotropic elastic material idealization.  

10. Observations of Poisson’s Ratios for Soils. Some general observations related to Poisson’s ratios 
determined using the experimental techniques discussed in the previous section are now briefly 
discussed.  

10.1 Isotropic Material Idealizations. The experiments performed by Rowe [60] seemed to show 
that '  is indeed isotropic. Hardin [22] noted that, due to the insensitivity of the soil behavior to the 
value of Poisson’s ratio, accurate measurements of '  from wave propagation experiments were 
difficult to obtain. However, analysis of his RC tests on Ottawa sand produced constant values of '  in 
the range from 0.11 to 0.23. Subsequent experimental findings seem to indicate that, for a given soil at a 
given void ratio, '  is essentially constant [13; 43; 26]. 

Yokota and Konno [75] performed cyclic triaxial (axisymmetric) tests on undisturbed and 
reconstituted specimens of cohesive soils and alluvial clays. Their investigation showed that, for the 
cohesive soil, '  was essentially equal to 0.5, thus reflecting the undrained conditions in these tests. 
Tests on sandy soils produced values in the range from 0.2 to 0.4. These test results showed a tendency 
for slightly increasing '  values with increasing magnitudes of shear strains, whereas the influence of 
confining pressure was found to be negligible. The latter finding, which was subsequently confirmed 
for Hostun Sand by El Hosri [13], is consistent with the theoretical findings of Mindlin and Deresiewicz 
[50]. In a rather limited number of studies [72; 42], '  for clays has been directly correlated with the 
plasticity index  pI .  

Whereas Poisson’s ratio for a soil at a given void ratio appears to be constant, experimental evidence 
suggests that '  increases with increasing void ratio. Re-analysis of unloading branches from numerous 
tests performed on Ham River sand [12] showed a consistent variation of '  from 0.20 at a void ratio 
equal to 0.57 to 0.31 at a void ratio of 0.75 [43]. Lade and Nelson [43] also reported a similar trend for 
Santa Monica Sand, as did Gu et al. [21] for dry samples of Toyoura, Fujian and Leighton Buzzard sand.  

Based on the results of a number of bender elements and extender element tests performed on three 
dry sands (one fine-grained, one medium-grained, one coarse-grained), Kumar and Madhusudhan [38] 
noted that the magnitude of '  decreases with an increase  in  the magnitude  of  the  effective confining  
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stress and relative density. The effect of the confining stress on '  was found to be more substantial for 
the fine-grained sand as compared with the coarse-grained one. For the given sand, at a certain effective 
confining stress, the magnitude of the '  was found to decrease almost linearly with an increase in the 
value of maxG .  

Hicher [26] noted that for Hostun Sand, '  appears to slightly depend on the grain size distribution. 
For poorly-graded samples, 18.0' ; for well-graded samples, 32.0' . Wichtmann and 
Triantafyllidis [70] performed more than 160 RC tests (with additional P-wave measurements) on 
samples of a quartz sand that were prepared so as to give 27 different grain size distribution curves 
from a sieve analyses. From the results of these tests, it was determined that '  does not depend on the 
mean grain size  50d  but increases with increasing coefficient of uniformity 1060 / ddCu   of the grain 
size distribution curve.  

10.2 Transversely Isotropic Material Idealizations. Test results for Ham River sand obtained by 
Kuwano and Jardine [40] showed significant scatter in the Poisson ratio values, which underscored the 
difficulty in precisely measuring radial strains. Values of '

nt  varied between 0.2 and 0.4, apparently 
decreasing as p’ increased. Values of '

tt  were smaller, ranging between 0.05 and 0.20. Kuwano and 
Jardine [40] concluded that there was no clear difference between the Poisson’s ratios of loose and 
dense specimens. Both '

nt  and '
tt  values were slightly larger under anisotropic stress states (K = 0.45).  

Yimsiri and Soga [74] determined the values of the five parameters associated with the transversely 
isotropic elastic material idealization of two natural, overconsolidated stiff clays, namely London clay 
and Gault clay. Both London clay [27; 33; 15] and Gault clay [55; 47] have been the focus of earlier 
studies, though these efforts did not provide a complete a complete set of material parameter values. 
The values of '

tt  and '
tn  measured by Yimsiri and Soga [74] exhibited some scatter, and but there was 

no evident relationship with confining pressure. Consequently, Yimsiri and Soga [74] assumed these 
Poisson’s ratios to be constant and independent of the confining stress. This is consistent with the earlier 
findings of Kirkgard and Lade [35] for San Francisco Bay Mud.  

Nishimura [54] used an axisymmetric triaxial apparatus with two pairs of bender elements [53] to 
test saturated sedimentary clays from six different strata located in Japan. In general, the measuring 
Poisson’s ratios at very small strains proved to be very difficult because of the small magnitude of the 
strains. Values of '

nt , '
tn , and '

tt  were generally the same for all six clays. All three Poisson’s ratios 
did not exhibit any consistent dependence on changes in effective stress. For some of the clays, '

tt  was 
negative. 

11. Functional Forms Proposed for Poisson’s Ratios for Soils. The simplest functional relationship 
for Poisson’s ratio is to assume it to be constant. This has been done in both isotropic [13; 43; 26] and 
transversely isotropic [35; 11; 40; 74; 54] material idealizations. Since experimental evidence is not, 
however, universally supportive of such an assumption, it is instructive to briefly review some 
functional forms that assume a variable Poisson’s ratio.  

11.1 Isotropic Material Idealizations. Based on the results of tests performed on three dry uniform 
sands (Toyoura, Fujian and Leighton Buzzard), Gu et al. [21] found that at a given pressure, '  
increases with increases in void ratio (e). This findings is consistent with the earlier results of Daramola 
[12] and Lade and Nelson [43]. At the same void ratio, '  was found to decrease with increases in 
confining stress. Gu et al. [21] thus proposed the following general functional form for ' : 
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where n is another model parameter, '  is the effective confining stress, and refp  is again a reference 
stress (taken equal to 98 kPa). The following functions were determined for Toyoura, Fujian, and 
Leighton Buzzard sand: 
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respectively.  
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V.N. Kaliakin11.2 Transversely Isotropic Material Idealizations. The results of axisymmetric triaxial tests 
performed on various uncemented sands and gravels [62; 32; 29] demonstrated that such soils are 
inherently transversely isotropic. Based on these results, a hypoelastic constitutive model was proposed 
by Tatsuoka and Kohata [62] and then subsequently refined by Hoque et al. [30], Jiang et al. [32], Hoque 
and Tatsuoka [29], and Tatsuoka et al. [63]. This model is based on the assumptions of Hardin [22] and 
Hardin and Bladford [24] that the Young’s modulus  iE  associated with a particular coordinate 
direction is a unique function of the normal stress acting in this direction, and is independent of the 
other two orthogonal directions. 

Under axisymmetric triaxial conditions with the 1x  direction oriented normal to the plane of 
isotropy,          . The Young’s moduli are then assumed to have the following “power” form: 
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where m is a model parameter, and  eF  is the following function of the void ratio e [29]: 
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which was proposed for sands with rounded grains by Hardin and Richart [25] and Hardin and Black 
[23]. 
In Equations (32) and (33), 
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where  refnE '  is the value of '

nE  for ''
11 ref  , and  refeF  is the value of  eF  for refee  ; i.e., the 

void ratio associated with ''
11 ref  . The quantity '

ref  is a reference stress that has the same units as 
'
22

'
11, , and '

33 . In the past, '
ref  has typically been set equal to the atmospheric pressure  aP . 

Finally, in Equation (33), '' / ntE EER   represents the degree of inherent anisotropy ( 0.1ER  implies 
an inherently isotropic material).  

From Equations (32) and (33), 
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'
11 // tnR   , which represents the stress-induced anisotropy.  

Assuming symmetry of A,                     . Substituting Equations (32) and (33) into this 
expression gives 
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Although Equation (37) is consistent with Equations (32) and (33), it does not give explicit 

expressions for either '
tn  or '

nt . To overcome this shortcoming, Hoque and Tatsuoka [29] developed 
alternate functional forms for '

tn  and '
nt . They noted that, based on the results of axisymmetric triaxial 

tests performed on different sands at various stress states in the range 0.25.0  R , the Poisson’s 
ratio '

nt  did not vary greatly. Within the range of pressures investigated, the value of '
nt  was not 

sensitive to the change in '
n  or '

t  at a fixed ratio R . This Poisson’s ratio did, however, gradually 
increase with R .  
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respectively.  
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To account for this fact and to include the effect of inherent anisotropy (via ER ) while also satisfying 
the relation '''' // nntttn EE    that comes from the symmetry of A, Hoque and Tatsuoka [29] proposed 
the following functional forms: 

 

        
 
  

       ;             
  

 
   

                                    (38) 

 
Regarding the Poisson’s ratio '

tt , Hoque and Tatsuoka [29] proposed that 0
'  tn . Then, for 

isotropic materials (i.e., 0.1ER ) subjected to isotropic stress states, 0
'''   tttnnt . Clearly, this 

choice of '
tt  is somewhat arbitrary.  

In summary, although the model proposed by Tatsuoka and co-workers is arguably the most 
advanced transversely isotropic elastic formulation for soils, it still possesses several shortcomings. 
Firstly, it only predicts truly transversely isotropic elastic response under axisymmetric triaxial 
conditions. Thus, it is not a general transversely isotropic elastic model. Secondly, its treatment of 
Poisson’s ratios in general, and '

tt  in particular, is somewhat arbitrary.  
 12. Conclusions. Some key issues associated with the seemingly straightforward task of 

determining Poisson ratio values for soils have been presented in this paper. Although some of these 
issues have been previously discussed in other publications, the focus in these earlier works has been 
on isotropic elastic material idealizations. The emphasis in this paper has thus been on transversely 
isotropic elastic idealizations. As in the case of isotropic formulations, there is no consensus on the 
proper functional representation of Poisson’s ratios for transversely isotropic elastic idealizations. This 
is, in part, due to the difficulties in accurately measuring the very small lateral strains generated by 
axial loading in the elastic range. Such inaccuracies in measurement complicate the development of 
definitive conclusions related to Poisson’s ratios for soils. They also point to the need for performing 
additional investigations that measure Poisson’s ratios for transversely isotropic soils, especially for 
cohesive soils. 
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Анизотропты топырақтарға арналған Пуассон коэффициенттеріне қатысты кейбір бақылаулар

Аңдатпа. Топырақтың серпімділік модульдерін анықтау айқын болған көрініс. Алайда, бұл Пуассон 
коэффициенттеріне қатысты емес. Осыған орай, бұл жұмыста топырақ үшін Пуассон коэффициентінің 
мәндерін анықтауға байланысты кейбір негізгі мәселелер қарастырылады. Талқылау толықтығы үшін 
изотропты серпімді материалдарды идеализациялауды қамтыса да, көлденең изотропты серпімді идеа-
лизацияға баса назар аударылады.

Түйін сөздер: Пуассон коэффициенті, серпімділік, изотропия, анизотропия, ортотропия, көлде-
нең-изотропия.
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Университет штата Делавэр, Ньюарк, штат Делавэр, США

Некоторые наблюдения относительно коэффициентов Пуассона для анизотропных грунтов

Аннотация. Определение модулей упругости грунтов в целом хорошо известно. Однако это не обя-
зательно верно для коэффициентов Пуассона. Таким образом, в данной работе рассматриваются неко-
торые ключевые вопросы, связанные с определением значений коэффициента Пуассона для почв. Хотя 
обсуждение включает идеализации изотропных упругих материалов для полноты, акцент делается на 
поперечно-изотропных упругих идеализациях.

Ключевые слова: коэффициент Пуассона, упругость, изотропия, анизотропия, ортотропия, попе-
речная изотропия.
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