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On the possibility of changing the trajectory of a projectile or a rocket 
based on aerodynamic impact in the shock wave zone
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Abstract. A physical hypothesis is proposed that it is possible to change 
the design trajectory of the projectile on the basis of mechanical action on the 
entire volume of shockwave zones with a unilateral, asymmetric presence of 
the second projectile. Deviating from the original trajectory results in a positive 
result when it comes to a defensive task. 

A new semi-empirical model has been developed and compiled, which 
allows you to calculate the trajectory of the projectile taking into account the air 
resistance to movement. 

In the new model, it is recommended that only four easily detectable values  
be used in upcoming experiments: 

the initial departure speed v_0, the maximum altitude y_max, the maximum 
flight range x_2 and the full time. The calculation scheme uses iterative 
calculations. On the basis of which the values   of numerical coefficients in the 
semi-empirical model are specified. The physical idea that external powerful 
laser radiation can heat the side surface of the projectile and the entire zone of 
wave jumps of the seal is justified. On one side of the semi-plant, that is, it is one-
way heating. The asymmetrical thermal state on both sides of the missile may 
cause the missile or projectile to deviate from the previously assigned heading. 
This circumstance is also in favor of the proposed idea.
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1. Introduction

In modern combat and military technologies, rocket attacks from long distances play a 
leading role. The way when numerous troops are fighting figuratively speaking "head-on" with 
machine guns in hand is a thing of the past. This method of warfare is apparently outdated, as 
it leads to great human losses on both sides.  This "old" method of warfare will be effective only 
when conducting some very local special operations, that are characterized by short-term, fast 
operations, and very small human losses. 

The utilization of various missiles (small, medium, and long-range) and long-range artillery 
shells is very effective for the targeted large-scale destruction of various enemy objects.  In 
this article, we are talking about distances from several dozen at a minimum and up to several 
thousand kilometers at a maximum.

In our article, we focus on new protective measures from various missile attacks. More 
precisely, this paper describes a method to forcefully change the trajectory of a flying combat 
projectile. Protective actions are designed to prevent a missile or a projectile from hitting exactly 
the assigned target according to the preliminary combat calculation. Instead, the projectile 
deviates from its trajectory and hits a different, non-intended place, which nullifies the effect 
of its use. The proposed method can be used as the last option for defense against enemy 
projectiles when traditional interception methods such as direct kinematic hits or a proximity 
explosion have failed.

The general theory of gas-dynamic currents is presented in works [1-11]. Theoretical 
foundations of probabilistic models are presented in [12]. The same sources provide basic 
formulas that describe the ratios of physical quantities and parameters of shock waves. The 
theory of projectile flight in an ideal environment that does not exert resistance to movement is 
detailed in the works [13-15]. 

  
2. The theoretical solution to the problem

Figure 1 shows a photograph of a flying projectile at supersonic speed, which is taken from [1]

Figure 1 – Photo of a projectile flying with a supersonic speed [1]
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Figure 2 shows the supersonic flow pattern and the pressure distribution along the 
surface of the curved body from the work [1].

These two figures show that along the surface of the streamlined body: 1) Not 
one, but several shock wave fronts occur; 2) Along the transverse Y coordinate,
shock waves have dimensions several times larger than the diameters of the 
transverse size of the projectile or rocket itself. The primary loss of initial rocket or 
projectile momentum occurs at these shock waves. 

The new idea that we propose is the following. A flying projectile (or rocket) can
be approached by another projectile from behind and it will be in the inner zone of
this shock wave. That is, they fly almost parallel in the same direction. This situation 
is shown in Figure 3. We will call it projectile number 2. The initial, flying combat 
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Figure 2 shows the supersonic flow pattern and the pressure distribution along the surface 
of the curved body from the work [1]. 

These two figures show that along the surface of the streamlined body: 1) Not one, but several 
shock wave fronts occur; 2) Along the transverse Y coordinate, shock waves have dimensions 
several times larger than the diameters of the transverse size of the projectile or rocket itself. 
The primary loss of initial rocket or projectile momentum occurs at these shock waves. 

The new idea that we propose is the following. A flying projectile (or rocket) can be approached 
by another projectile from behind and it will be in the inner zone of this shock wave. That is, 
they fly almost parallel in the same direction. This situation is shown in Figure 3. We will call 
it projectile number 2. The initial, flying combat projectile (or missile) is designated with the 
number 1. Let's say that projectile 2 is inside the shock wave zone above projectile 1, Figure 
3. We will analyze the situation by evaluating the change in the wave resistance of the flying 
projectile 1. Figure 3 shows the situation where projectile 2 is close to the main projectile 1 
inside the zone of its supersonic wavefront. That is, they fly almost parallel in the same direction, 
close to each other. 

Figure 2 – Diagram of supersonic flow around curved arc bodies
 and wave  jumps (shock waves) [1]

  
Explanations to Figure 3: 1-first main projectile;  2-second projectile that shoots down 

the main projectile 1; 3, 4-shock wavefronts from the first projectile; 3', 4'- shock wavefronts 
displaced in space from the second projectile; 5, 6-tail guide vanes.  

Figure 3 – Aerodynamic interaction diagram two shells or two missiles
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Figure 3 - Aerodynamic interaction diagram two shells or two missiles.

As a result of projectile 2 being inside the wave zone of projectile 1, the position 
of the shock wave front of the first main projectile or missile is displaced. The main
shock wave 3 in Figure 3 will shift either downstream or upstream to the frontal front 
of the projectile, 3′. Other shock waves will also be altered. The angles of their 
inclination will also be changed. Perhaps even the shock wave front will have a 
slightly curved shape. As a result of these processes, projectile 1 will for some time
experience asymmetrical and unequal levels of pressure distribution, and the general
aerodynamic drag on the upper and lower sides of the surface will be different. In 
other words, the resistance of the shock wave branches in the space below projectile 1 
will be different from the resistance of the shock wave branches in the space above it.

As a result, the trajectory of projectile 1 will bend downward or upward toward 
the ground. That is, this projectile will deviate from the original and planned 
trajectory. This result is what we need. Therefore, a brief presence of the second
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trajectory. This result is what we need. Therefore, a brief presence of the second



Л.Н. Гумилев атындағы Еуразия ұлттық университетінің ХАБАРШЫСЫ.
Техникалық ғылымдар және технологиялар сериясы

ISSN: 2616-7263. eISSN: 2663-1261

24 №1(146)/ 2024

Zhakatayev T. A., Konysbekova G.K.   

As a result of projectile 2 being inside the wave zone of projectile 1, the position of the shock 
wave front of the first main projectile or missile is displaced. The main shock wave 3 in Figure 
3 will shift either downstream or upstream to the frontal front of the projectile, 3'. Other shock 
waves will also be altered. The angles of their inclination will also be changed. Perhaps even 
the shock wave front will have a slightly curved shape. As a result of these processes, projectile 
1 will for some time experience asymmetrical and unequal levels of pressure distribution, and 
the general aerodynamic drag on the upper and lower sides of the surface will be different. In 
other words, the resistance of the shock wave branches in the space below projectile 1 will be 
different from the resistance of the shock wave branches in the space above it. 

 As a result, the trajectory of projectile 1 will bend downward or upward toward the ground. 
That is, this projectile will deviate from the original and planned trajectory. This result is what 
we need. Therefore, a brief presence of the second projectile in any area of the shock waves will 
result in a deflection of the trajectory of the first projectile. That is, it will fall to another, not 
planned, not calculated point. Thus, the task of defense will be achieved based on the fact that 
the projectile will hit (or fall into) a different location.  

We considered the case of the smallest effect of the second projectile, when it flies along a 
parallel trajectory or along a tangent trajectory, without a direct collision with projectile 1. If 
projectile 2 has a direct actual physical collision (impact) with projectile 1, then the expected 
effect will be greater. In the case when projectile 2 experiences a collision, the change in the 
trajectory of projectiles 1 and 2 is easily explained on the basis of the law of maintaining the 
total momentum of the system.  

Let's take a closer look at this situation. With such an almost parallel flight of these two 
projectiles, the likelihood of the influence of the second projectile on the first increases sharply. 
We didn't specifically use the word "hit" here. Since the expected result can be achieved not only 
as a result of a clean hit (a precise mechanical collision) but also as a result of their parallel and 
close flight close to each other for some short period of time. This can be proved by calculating 
and estimating the probability of their mutual "interaction". The term "interactions" that we use 
means the result of their mutual mechanical influence on each other during the time when they are 
nearby in the zone of effective mutual influence. This is achieved by the fact that during a certain 
duration of time, their trajectories are almost or close to parallel. So, the result of their "interaction" 
is estimated by determining the probability that the volumes of their shock waves’ effective zones 
(or wave fronts) turn out to be merged. That is when the shock waves penetrate each other. 

Figure 3 shows a scheme of aerodynamic interaction in the following combination: two 
missiles, two shells, or a rocket and a shell. Due to the fact that the second projectile is located 
in the zone of shock waves of the main shell, the front of shock wave 3 moves away and is 
located at the new position as shock wave 3'. In the same way, the primary wave 4 changes its 
position and becomes the shock wave 4'.  That is, the shock wave fronts are displaced along the 
longitudinal coordinate x.    For this reason, the total drag force at the top of projectile 1 will be 
smaller than at its bottom. Such asymmetry of the drag force will result in the deflection of the 
trajectory of projectile 1. This completes the proof. 

Consider the theoretical solution in two versions: 1) the air resistance force is constant 
Fa= const; 2) the air resistance force is variable and is a function of the velocity of the projectile 
Fa=F(v) missile.
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Solving Problem 1.
Dynamic equations in Cartesian coordinates are

The equation for vy is solved separately in two parts: 1) until the point of maximum elevation  
0 ≤ t ≤ t1;  2) from t1 moment until the end of flight (falling to the ground) t2, t1 ≤ t ≤ t2. Thus, the 
time of the full flight is ts=t1+t2. At the end of the flight, the projectile falls to the ground. 

 Solving these equations we get

where vy, 2 – the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

where vx,2 is the velocity of the projectile at the end of the flight, that is, before it hits the 
target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the vx2. Assuming 
that Fax≈Fay. Next, the total drag force

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity  
Fa=F(v).
Equation for y projection is written as

The air resistance force can be represented as the following nonlinear function of velocity

In turn, in the first approximation  vy=kt – some linear function with time t.  It is due to the 
presence of wave aerodynamic drag that k≠g. 
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projectile in any area of the shock waves will result in a deflection of the trajectory of
the first projectile. That is, it will fall to another, not planned, not calculated point.
Thus, the task of defense will be achieved based on the fact that the projectile will hit
(or fall into) a different location. 

We considered the case of the smallest effect of the second projectile, when it 
flies along a parallel trajectory or along a tangent trajectory, without a direct collision 
with projectile 1. If projectile 2 has a direct actual physical collision (impact) with
projectile 1, then the expected effect will be greater. In the case when projectile 2 
experiences a collision, the change in the trajectory of projectiles 1 and 2 is easily
explained on the basis of the law of maintaining the total momentum of the system.

Let's take a closer look at this situation. With such an almost parallel flight of 
these two projectiles, the likelihood of the influence of the second projectile on the 
first increases sharply. We didn't specifically use the word "hit" here. Since the 
expected result can be achieved not only as a result of a clean hit (a precise
mechanical collision) but also as a result of their parallel and close flight close to
each other for some short period of time. This can be proved by calculating and 
estimating the probability of their mutual "interaction". The term "interactions" that 
we use means the result of their mutual mechanical influence on each other during 
the time when they are nearby in the zone of effective mutual influence. This is
achieved by the fact that during a certain duration of time, their trajectories are almost
or close to parallel. So, the result of their "interaction" is estimated by determining 
the probability that the volumes of their shock waves’ effective zones (or wave
fronts) turn out to be merged. That is when the shock waves penetrate each other. 

Figure 3 shows a scheme of aerodynamic interaction in the following 
combination: two missiles, two shells, or a rocket and a shell. Due to the fact that the 
second projectile is located in the zone of shock waves of the main shell, the front of
shock wave 3 moves away and is located at the new position as shock wave 3′. In the 
same way, the primary wave 4 changes its position and becomes the shock wave 4′. 
That is, the shock wave fronts are displaced along the longitudinal coordinate x. For 
this reason, the total drag force at the top of projectile 1 will be smaller than at its 
bottom. Such asymmetry of the drag force will result in the deflection of the 
trajectory of projectile 1. This completes the proof.

Consider the theoretical solution in two versions: 1) the air resistance force is
constant 𝐹𝐹𝑎𝑎 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐; 2) the air resistance force is variable and is a function of the 
velocity of the projectile 𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣) missile.

Solving Problem 1.
Dynamic equations in Cartesian coordinates are

{
𝑚𝑚 𝑑𝑑𝑣𝑣𝑥𝑥

𝑑𝑑𝑑𝑑 = −𝐹𝐹𝑎𝑎,𝑥𝑥,

𝑚𝑚 𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑 = −𝐹𝐹𝑎𝑎,𝑦𝑦 − 𝑚𝑚𝑚𝑚.

                  (1) 

The equation for 𝑣𝑣𝑦𝑦 is solved separately in two parts: 1) until the point of
maximum elevation 0 ≤ 𝑐𝑐 ≤ 𝑐𝑐1; 2) from 𝑐𝑐1 moment until the end of flight (falling to
the ground) 𝑐𝑐2 , 𝑐𝑐1 ≤ 𝑐𝑐 ≤ 𝑐𝑐2. Thus, the time of the full flight is 𝑐𝑐𝑠𝑠 = 𝑐𝑐1 + 𝑐𝑐2. At the 
end of the flight, the projectile falls to the ground.
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Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,                                (2) 

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the 
𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 

5

Solving these equations we get

      𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

       𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the 
𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 
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Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,                      (3) 

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the 
𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 
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Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the 
𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 .  

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 

5

Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the 
𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                              (5)   

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 

5

Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the 
𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

      𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.     (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 

5

Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the 
𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 .            (6) 

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 
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Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the 
𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

    𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2  . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 
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Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,                 (4) 

                                                                                                                             
where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it

hits the target, which is located on the ground. 
Equation (4) allows you to use it in reverse order, that is, you can calculate the 

𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 
Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 
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Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

     𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

                                                                                                                             
where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it

hits the target, which is located on the ground. 
Equation (4) allows you to use it in reverse order, that is, you can calculate the 

𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 
Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 
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Equations (5), as well as (1), are solved in two parts separately: 1) to a point of the maximum 
elevation 0 ≤ t ≤ t1; 2) from the moment of the beginning of descent  t_1, until the end of falling 
t1 ≤ t ≤ t2. 

Part 1.
For the moment of  t1 we have a solution

where 

For the purposes of our tasks, equation (7) is interesting. As yet unknown coefficients a, b, c  
are determined by solving matrix equation (7) which is obtained at the given values (v0,y)i and  
(t1)i – (for example, measured from the experiment).

Since there are only 3 unknown coefficients, then in our case three equations and three 
values   at i = 1, 2, 3 are enough. However, if in equation (6) we would add an additional term to 
the power of 3, then accordingly i = 1, 2, 3, 4. For example, it  can be  Fa,y (v)=av0,y+bvy+сvy

2+dvy
3. 

However, it is most likely that a quadratic function (6) is sufficient. Since in this case, with respect 
to time t, we have a cubic equation. As you know, third-degree splines accurately describe a 
variety of highly curved profiles.  

Part 2.
Down, descent.  For it, in equation (5), the gravity term will be written with a plus sign

Solving equation (9), we get

where

vy,2 –the speed component before hitting the target, its final value. 
Part 3. 
We solve the first equation of (1) for  vx . In this case 

Solving (1) and taking into account (12) we will get
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Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the 
𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                              (7) 

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
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where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 
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𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 
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𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                           (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 

5

Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the 
𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

      𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚 , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 

5

Solving these equations we get

𝐹𝐹𝑎𝑎,𝑦𝑦 =
𝑚𝑚𝑚𝑚0,𝑦𝑦
𝑡𝑡1

− 𝑚𝑚𝑚𝑚,               (2)

𝑣𝑣𝑦𝑦,2 = (𝑚𝑚 − 𝐹𝐹𝑎𝑎,𝑦𝑦
𝑚𝑚 ) 𝑡𝑡2,       (3)

where 𝑣𝑣𝑦𝑦,2 - the y-axis velocity projection at the end of the flight.
From the first equation of the system (1) we get

𝐹𝐹𝑎𝑎,𝑥𝑥 =
(𝑚𝑚0,𝑥𝑥−𝑚𝑚𝑥𝑥,2)𝑚𝑚

𝑡𝑡𝑠𝑠
,           (4)

where 𝑣𝑣𝑥𝑥,2 is the velocity of the projectile at the end of the flight, that is, before it
hits the target, which is located on the ground. 

Equation (4) allows you to use it in reverse order, that is, you can calculate the 
𝑣𝑣𝑥𝑥2. Assuming that 𝐹𝐹𝑎𝑎𝑥𝑥 ≈ 𝐹𝐹𝑎𝑎𝑦𝑦. Next, the total drag force 𝐹𝐹𝑠𝑠 = √𝐹𝐹𝑎𝑎,𝑥𝑥2 + 𝐹𝐹𝑎𝑎,𝑦𝑦2 . 

Solving Problem 2.
In this case, the resistance force is variable and is a function of the velocity

𝐹𝐹𝑎𝑎 = 𝐹𝐹(𝑣𝑣).
Equation for y projection is written as

𝑚𝑚𝑑𝑑𝑚𝑚𝑦𝑦
𝑑𝑑𝑡𝑡 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) − 𝑚𝑚𝑚𝑚.                         (5)

The air resistance force can be represented as the following nonlinear function of 
velocity

𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦2 . (6)

In turn, in the first approximation 𝑣𝑣𝑦𝑦 = 𝑘𝑘𝑡𝑡 - some linear function with time t. It 
is due to the presence of wave aerodynamic drag that 𝑘𝑘 ≠ 𝑚𝑚.

Equations (5), as well as (1), are solved in two parts separately: 1) to a point of 
the maximum elevation 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1; 2) from the moment of the beginning of descent
𝑡𝑡1, until the end of falling 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2.

Part 1.
For the moment of 𝑡𝑡1 we have a solution

𝑣𝑣0,𝑦𝑦 = 𝑚𝑚𝑡𝑡1 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑏𝑏 + 𝛾𝛾𝛾𝛾,                   (7)

where

     𝛼𝛼 = 𝑚𝑚0,𝑦𝑦𝑡𝑡1
𝑚𝑚  , 𝛽𝛽 = 𝑘𝑘𝑡𝑡12

2𝑚𝑚 , 𝛾𝛾 = 𝑘𝑘2𝑡𝑡13
3𝑚𝑚 .                  (8)             

For the purposes of our tasks, equation (7) is interesting. As yet unknown
coefficients 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are determined by solving matrix equation (7) which is obtained 
at the given values (𝑣𝑣0,𝑦𝑦)𝑖𝑖 and (𝑡𝑡1)𝑖𝑖- (for example, measured from the experiment). 

6

Since there are only 3 unknown coefficients, then in our case three equations and
three values at i = 1, 2, 3 are enough. However, if in equation (6) we would add an 
additional term to the power of 3, then accordingly i = 1, 2, 3, 4. For example, it can
be 𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦

2 + 𝑑𝑑𝑣𝑣𝑦𝑦
3. However, it is most likely that a quadratic 

function (6) is sufficient. Since in this case, with respect to time 𝑡𝑡, we have a cubic 
equation. As you know, third-degree splines accurately describe a variety of highly 
curved profiles.

Part 2.
Down, descent. For it, in equation (5), the gravity term will be written with a plus sign

         𝑚𝑚 𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) + 𝑚𝑚𝑚𝑚.  (9) 

Solving equation (9), we get 

𝑣𝑣𝑦𝑦,2 = 𝑚𝑚𝑡𝑡2 − 𝜎𝜎1𝑡𝑡2
2 − 𝜎𝜎2𝑡𝑡2

3, (10)

where

𝜎𝜎1 = 𝑏𝑏𝑏𝑏
2𝑚𝑚 , 𝜎𝜎2 = 𝑐𝑐𝑏𝑏2

3𝑚𝑚 , (11)

𝑣𝑣𝑦𝑦,2 –the speed component before hitting the target, its final value. 
Part 3.
We solve the first equation of (1) for 𝑣𝑣𝑥𝑥 . In this case

𝐹𝐹𝑎𝑎,𝑥𝑥 = 𝑎𝑎𝑣𝑣0,𝑥𝑥 + 𝑏𝑏𝑣𝑣𝑥𝑥 + с𝑣𝑣𝑥𝑥
2 .         (12)

Solving (1) and taking into account (12) we will get

𝑣𝑣𝑥𝑥,2 = 𝑣𝑣0,𝑥𝑥 − 𝑣𝑣0,𝑥𝑥
𝑚𝑚 𝑎𝑎𝑡𝑡𝑠𝑠 − 𝜎𝜎3𝑡𝑡𝑠𝑠

2 − 𝜎𝜎4𝑡𝑡𝑠𝑠
3,                        (13)

where 𝑣𝑣𝑥𝑥,2 - is the value of the velocity projection before falling, hitting the target, this is the final 
velocity, and 

𝜎𝜎3 = 𝑏𝑏𝑏𝑏1
2𝑚𝑚 ,  𝜎𝜎4 = 𝑐𝑐𝑏𝑏12

3𝑚𝑚 ,  𝑘𝑘 = 𝑘𝑘1 ± 𝑚𝑚.  

From the formula 𝑡𝑡𝑚𝑚 𝛼𝛼′ = 𝑣𝑣𝑦𝑦,2
𝑣𝑣𝑥𝑥,2

, the angle of incidence of 𝛼𝛼′ can be determined.

And 𝛼𝛼′ > 𝛼𝛼. In case of medium resistance the flight range decreases. In an
environment that has no resistance, the range will be longer. Knowing 𝛼𝛼′ and 𝑥𝑥𝑠𝑠 we 
can estimate the strength or the drag resistance level of air.

Equations (6) to (13) allow iterative solutions and refinement of coefficients. The 
fact is that in the first approximation and at the first, initial iteration, we can take the 
k≈g - acceleration of free fall. 𝑘𝑘1 is determined by experimental data using formula 
(13) and 𝑥𝑥2. And equation (7) must be used twice within the iteration cycle. When
iterated, the values of 𝑘𝑘1 either decrease or increase with a certain fine ℎ𝑏𝑏 = (0.01 ÷
0.05)𝑘𝑘1 step size. This is determined from the analysis of the obtained numerical 
results.  So to speak, visual control of values with different variations.
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2𝑚𝑚 , 𝜎𝜎2 = 𝑐𝑐𝑏𝑏2

3𝑚𝑚 ,      (11) 

𝑣𝑣𝑦𝑦,2 –the speed component before hitting the target, its final value. 
Part 3.
We solve the first equation of (1) for 𝑣𝑣𝑥𝑥 . In this case

𝐹𝐹𝑎𝑎,𝑥𝑥 = 𝑎𝑎𝑣𝑣0,𝑥𝑥 + 𝑏𝑏𝑣𝑣𝑥𝑥 + с𝑣𝑣𝑥𝑥
2 .         (12)

Solving (1) and taking into account (12) we will get

𝑣𝑣𝑥𝑥,2 = 𝑣𝑣0,𝑥𝑥 − 𝑣𝑣0,𝑥𝑥
𝑚𝑚 𝑎𝑎𝑡𝑡𝑠𝑠 − 𝜎𝜎3𝑡𝑡𝑠𝑠

2 − 𝜎𝜎4𝑡𝑡𝑠𝑠
3,                        (13)

where 𝑣𝑣𝑥𝑥,2 - is the value of the velocity projection before falling, hitting the target, this is the final 
velocity, and 

𝜎𝜎3 = 𝑏𝑏𝑏𝑏1
2𝑚𝑚 ,  𝜎𝜎4 = 𝑐𝑐𝑏𝑏12

3𝑚𝑚 ,  𝑘𝑘 = 𝑘𝑘1 ± 𝑚𝑚.  

From the formula 𝑡𝑡𝑚𝑚 𝛼𝛼′ = 𝑣𝑣𝑦𝑦,2
𝑣𝑣𝑥𝑥,2

, the angle of incidence of 𝛼𝛼′ can be determined.

And 𝛼𝛼′ > 𝛼𝛼. In case of medium resistance the flight range decreases. In an
environment that has no resistance, the range will be longer. Knowing 𝛼𝛼′ and 𝑥𝑥𝑠𝑠 we 
can estimate the strength or the drag resistance level of air.

Equations (6) to (13) allow iterative solutions and refinement of coefficients. The 
fact is that in the first approximation and at the first, initial iteration, we can take the 
k≈g - acceleration of free fall. 𝑘𝑘1 is determined by experimental data using formula 
(13) and 𝑥𝑥2. And equation (7) must be used twice within the iteration cycle. When
iterated, the values of 𝑘𝑘1 either decrease or increase with a certain fine ℎ𝑏𝑏 = (0.01 ÷
0.05)𝑘𝑘1 step size. This is determined from the analysis of the obtained numerical 
results.  So to speak, visual control of values with different variations.
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Since there are only 3 unknown coefficients, then in our case three equations and
three values at i = 1, 2, 3 are enough. However, if in equation (6) we would add an 
additional term to the power of 3, then accordingly i = 1, 2, 3, 4. For example, it can
be 𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦

2 + 𝑑𝑑𝑣𝑣𝑦𝑦
3. However, it is most likely that a quadratic 

function (6) is sufficient. Since in this case, with respect to time 𝑡𝑡, we have a cubic 
equation. As you know, third-degree splines accurately describe a variety of highly 
curved profiles.

Part 2.
Down, descent. For it, in equation (5), the gravity term will be written with a plus sign

𝑚𝑚 𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) + 𝑚𝑚𝑚𝑚.                                       (9)

Solving equation (9), we get 

𝑣𝑣𝑦𝑦,2 = 𝑚𝑚𝑡𝑡2 − 𝜎𝜎1𝑡𝑡2
2 − 𝜎𝜎2𝑡𝑡2
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2𝑚𝑚 , 𝜎𝜎2 = 𝑐𝑐𝑏𝑏2
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Part 3.
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𝐹𝐹𝑎𝑎,𝑥𝑥 = 𝑎𝑎𝑣𝑣0,𝑥𝑥 + 𝑏𝑏𝑣𝑣𝑥𝑥 + с𝑣𝑣𝑥𝑥
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Solving (1) and taking into account (12) we will get

𝑣𝑣𝑥𝑥,2 = 𝑣𝑣0,𝑥𝑥 − 𝑣𝑣0,𝑥𝑥
𝑚𝑚 𝑎𝑎𝑡𝑡𝑠𝑠 − 𝜎𝜎3𝑡𝑡𝑠𝑠

2 − 𝜎𝜎4𝑡𝑡𝑠𝑠
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where 𝑣𝑣𝑥𝑥,2 - is the value of the velocity projection before falling, hitting the target, this is the final 
velocity, and 

𝜎𝜎3 = 𝑏𝑏𝑏𝑏1
2𝑚𝑚 ,  𝜎𝜎4 = 𝑐𝑐𝑏𝑏12

3𝑚𝑚 ,  𝑘𝑘 = 𝑘𝑘1 ± 𝑚𝑚.  

From the formula 𝑡𝑡𝑚𝑚 𝛼𝛼′ = 𝑣𝑣𝑦𝑦,2
𝑣𝑣𝑥𝑥,2

, the angle of incidence of 𝛼𝛼′ can be determined.

And 𝛼𝛼′ > 𝛼𝛼. In case of medium resistance the flight range decreases. In an
environment that has no resistance, the range will be longer. Knowing 𝛼𝛼′ and 𝑥𝑥𝑠𝑠 we 
can estimate the strength or the drag resistance level of air.

Equations (6) to (13) allow iterative solutions and refinement of coefficients. The 
fact is that in the first approximation and at the first, initial iteration, we can take the 
k≈g - acceleration of free fall. 𝑘𝑘1 is determined by experimental data using formula 
(13) and 𝑥𝑥2. And equation (7) must be used twice within the iteration cycle. When
iterated, the values of 𝑘𝑘1 either decrease or increase with a certain fine ℎ𝑏𝑏 = (0.01 ÷
0.05)𝑘𝑘1 step size. This is determined from the analysis of the obtained numerical 
results.  So to speak, visual control of values with different variations.
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function (6) is sufficient. Since in this case, with respect to time 𝑡𝑡, we have a cubic 
equation. As you know, third-degree splines accurately describe a variety of highly 
curved profiles.
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𝑑𝑑𝑑𝑑 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) + 𝑚𝑚𝑚𝑚.                                       (9)

Solving equation (9), we get 

𝑣𝑣𝑦𝑦,2 = 𝑚𝑚𝑡𝑡2 − 𝜎𝜎1𝑡𝑡2
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𝑣𝑣𝑦𝑦,2 –the speed component before hitting the target, its final value. 
Part 3.
We solve the first equation of (1) for 𝑣𝑣𝑥𝑥 . In this case
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where 𝑣𝑣𝑥𝑥,2 - is the value of the velocity projection before falling, hitting the target, this is the final 
velocity, and 

𝜎𝜎3 = 𝑏𝑏𝑏𝑏1
2𝑚𝑚 ,  𝜎𝜎4 = 𝑐𝑐𝑏𝑏12

3𝑚𝑚 ,  𝑘𝑘 = 𝑘𝑘1 ± 𝑚𝑚.  

From the formula 𝑡𝑡𝑚𝑚 𝛼𝛼′ = 𝑣𝑣𝑦𝑦,2
𝑣𝑣𝑥𝑥,2

, the angle of incidence of 𝛼𝛼′ can be determined.

And 𝛼𝛼′ > 𝛼𝛼. In case of medium resistance the flight range decreases. In an
environment that has no resistance, the range will be longer. Knowing 𝛼𝛼′ and 𝑥𝑥𝑠𝑠 we 
can estimate the strength or the drag resistance level of air.

Equations (6) to (13) allow iterative solutions and refinement of coefficients. The 
fact is that in the first approximation and at the first, initial iteration, we can take the 
k≈g - acceleration of free fall. 𝑘𝑘1 is determined by experimental data using formula 
(13) and 𝑥𝑥2. And equation (7) must be used twice within the iteration cycle. When
iterated, the values of 𝑘𝑘1 either decrease or increase with a certain fine ℎ𝑏𝑏 = (0.01 ÷
0.05)𝑘𝑘1 step size. This is determined from the analysis of the obtained numerical 
results.  So to speak, visual control of values with different variations.
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Since there are only 3 unknown coefficients, then in our case three equations and
three values at i = 1, 2, 3 are enough. However, if in equation (6) we would add an 
additional term to the power of 3, then accordingly i = 1, 2, 3, 4. For example, it can
be 𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦
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3. However, it is most likely that a quadratic 

function (6) is sufficient. Since in this case, with respect to time 𝑡𝑡, we have a cubic 
equation. As you know, third-degree splines accurately describe a variety of highly 
curved profiles.

Part 2.
Down, descent. For it, in equation (5), the gravity term will be written with a plus sign

𝑚𝑚 𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) + 𝑚𝑚𝑚𝑚.                                       (9)

Solving equation (9), we get 

𝑣𝑣𝑦𝑦,2 = 𝑚𝑚𝑡𝑡2 − 𝜎𝜎1𝑡𝑡2
2 − 𝜎𝜎2𝑡𝑡2

3, (10)

where

𝜎𝜎1 = 𝑏𝑏𝑏𝑏
2𝑚𝑚 , 𝜎𝜎2 = 𝑐𝑐𝑏𝑏2

3𝑚𝑚 , (11)

𝑣𝑣𝑦𝑦,2 –the speed component before hitting the target, its final value. 
Part 3.
We solve the first equation of (1) for 𝑣𝑣𝑥𝑥 . In this case

        𝐹𝐹𝑎𝑎,𝑥𝑥 = 𝑎𝑎𝑣𝑣0,𝑥𝑥 + 𝑏𝑏𝑣𝑣𝑥𝑥 + с𝑣𝑣𝑥𝑥
2 .         (12)

Solving (1) and taking into account (12) we will get

𝑣𝑣𝑥𝑥,2 = 𝑣𝑣0,𝑥𝑥 − 𝑣𝑣0,𝑥𝑥
𝑚𝑚 𝑎𝑎𝑡𝑡𝑠𝑠 − 𝜎𝜎3𝑡𝑡𝑠𝑠

2 − 𝜎𝜎4𝑡𝑡𝑠𝑠
3,                        (13)

where 𝑣𝑣𝑥𝑥,2 - is the value of the velocity projection before falling, hitting the target, this is the final 
velocity, and 

𝜎𝜎3 = 𝑏𝑏𝑏𝑏1
2𝑚𝑚 ,  𝜎𝜎4 = 𝑐𝑐𝑏𝑏12

3𝑚𝑚 ,  𝑘𝑘 = 𝑘𝑘1 ± 𝑚𝑚.  

From the formula 𝑡𝑡𝑚𝑚 𝛼𝛼′ = 𝑣𝑣𝑦𝑦,2
𝑣𝑣𝑥𝑥,2

, the angle of incidence of 𝛼𝛼′ can be determined.

And 𝛼𝛼′ > 𝛼𝛼. In case of medium resistance the flight range decreases. In an
environment that has no resistance, the range will be longer. Knowing 𝛼𝛼′ and 𝑥𝑥𝑠𝑠 we 
can estimate the strength or the drag resistance level of air.

Equations (6) to (13) allow iterative solutions and refinement of coefficients. The 
fact is that in the first approximation and at the first, initial iteration, we can take the 
k≈g - acceleration of free fall. 𝑘𝑘1 is determined by experimental data using formula 
(13) and 𝑥𝑥2. And equation (7) must be used twice within the iteration cycle. When
iterated, the values of 𝑘𝑘1 either decrease or increase with a certain fine ℎ𝑏𝑏 = (0.01 ÷
0.05)𝑘𝑘1 step size. This is determined from the analysis of the obtained numerical 
results.  So to speak, visual control of values with different variations.
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On the possibility of changing the trajectory of a projectile or a rocket based 
оn aerodynamic impact in the shock wave zone

where vx,2 – is the value of the velocity projection before falling, hitting the target, this is the 
final velocity, and

From the formula tg α'= 
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Since there are only 3 unknown coefficients, then in our case three equations and
three values at i = 1, 2, 3 are enough. However, if in equation (6) we would add an 
additional term to the power of 3, then accordingly i = 1, 2, 3, 4. For example, it can
be 𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) = 𝑎𝑎𝑣𝑣0,𝑦𝑦 + 𝑏𝑏𝑣𝑣𝑦𝑦 + с𝑣𝑣𝑦𝑦
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3. However, it is most likely that a quadratic 

function (6) is sufficient. Since in this case, with respect to time 𝑡𝑡, we have a cubic 
equation. As you know, third-degree splines accurately describe a variety of highly 
curved profiles.

Part 2.
Down, descent. For it, in equation (5), the gravity term will be written with a plus sign

𝑚𝑚 𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) + 𝑚𝑚𝑚𝑚.                                       (9)

Solving equation (9), we get 

𝑣𝑣𝑦𝑦,2 = 𝑚𝑚𝑡𝑡2 − 𝜎𝜎1𝑡𝑡2
2 − 𝜎𝜎2𝑡𝑡2

3, (10)

where

𝜎𝜎1 = 𝑏𝑏𝑏𝑏
2𝑚𝑚 , 𝜎𝜎2 = 𝑐𝑐𝑏𝑏2

3𝑚𝑚 , (11)

𝑣𝑣𝑦𝑦,2 –the speed component before hitting the target, its final value. 
Part 3.
We solve the first equation of (1) for 𝑣𝑣𝑥𝑥 . In this case

𝐹𝐹𝑎𝑎,𝑥𝑥 = 𝑎𝑎𝑣𝑣0,𝑥𝑥 + 𝑏𝑏𝑣𝑣𝑥𝑥 + с𝑣𝑣𝑥𝑥
2 .         (12)

Solving (1) and taking into account (12) we will get

𝑣𝑣𝑥𝑥,2 = 𝑣𝑣0,𝑥𝑥 − 𝑣𝑣0,𝑥𝑥
𝑚𝑚 𝑎𝑎𝑡𝑡𝑠𝑠 − 𝜎𝜎3𝑡𝑡𝑠𝑠

2 − 𝜎𝜎4𝑡𝑡𝑠𝑠
3,                        (13)

where 𝑣𝑣𝑥𝑥,2 - is the value of the velocity projection before falling, hitting the target, this is the final 
velocity, and 

𝜎𝜎3 = 𝑏𝑏𝑏𝑏1
2𝑚𝑚 ,  𝜎𝜎4 = 𝑐𝑐𝑏𝑏12

3𝑚𝑚 ,  𝑘𝑘 = 𝑘𝑘1 ± 𝑚𝑚.  

From the formula 𝑡𝑡𝑚𝑚 𝛼𝛼′ = 𝑣𝑣𝑦𝑦,2
𝑣𝑣𝑥𝑥,2

 , the angle of incidence of 𝛼𝛼′ can be determined.

And 𝛼𝛼′ > 𝛼𝛼. In case of medium resistance the flight range decreases. In an
environment that has no resistance, the range will be longer. Knowing 𝛼𝛼′ and 𝑥𝑥𝑠𝑠 we 
can estimate the strength or the drag resistance level of air.

Equations (6) to (13) allow iterative solutions and refinement of coefficients. The 
fact is that in the first approximation and at the first, initial iteration, we can take the 
k≈g - acceleration of free fall. 𝑘𝑘1 is determined by experimental data using formula 
(13) and 𝑥𝑥2. And equation (7) must be used twice within the iteration cycle. When
iterated, the values of 𝑘𝑘1 either decrease or increase with a certain fine ℎ𝑏𝑏 = (0.01 ÷
0.05)𝑘𝑘1 step size. This is determined from the analysis of the obtained numerical 
results.  So to speak, visual control of values with different variations.

 , the angle of incidence of α' can be determined. And α'>α. In 

case of medium resistance the flight range decreases. In an environment that has no resistance, 
the range will be longer. Knowing α' and xs we can estimate the strength or the drag resistance 
level of air.

Equations (6) to (13) allow iterative solutions and refinement of coefficients. The fact is that 
in the first approximation and at the first, initial iteration, we can take the k≈g – acceleration 
of free fall.  k1 is determined by experimental data using formula (13) and x2. And equation (7) 
must be used twice within the iteration cycle. When iterated, the values of k1 either decrease or 
increase with a certain fine hk=(0.01÷0.05)k1 step size. This is determined from the analysis of 
the obtained numerical results.  So to speak, visual control of values with different variations. 

Alternately: first as (7) and then as (10).  

(14) are equations (5), (7) written for a time t1. This is the time of maximum elevation. 
Signs for k1 are determined after correction, re-clarification of  t1, t2, ts, v0,y, ymax, x2, vf from 

the experiment. That is, after iterative calculations. Formula (7) is written in such a way as to 
find unknown coefficients a, b, c. And formula (10) is written as such in order to calculate the 
velocity value for any given time value t.

We have some experience in developing algorithms and compiling our computing programs 
in C++ and Visual Fortran. Which make it possible to make detailed calculations at different 
variations of angles of attack, flight path and initial conditions of departure from the launcher. 
Taking into account the iteration. Our calculation scheme can include algorithms for fast, 
emergency determination of the flight path of projectile 1 from experimental data of the induced 
laser beam and computer analytical calculation of its flight path.

All the above is supplemented and explained by Figure 4: 1-trajectory in the presence of 
air resistance; 2 – trajectory in the absence of air resistance; v0 – initial speed; vf=v2 – finishing 
speed; α' – drop angle in case of air resistance accounting; x2 – maximum flight range.
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Since there are only 3 unknown coefficients, then in our case three equations and
three values at i = 1, 2, 3 are enough. However, if in equation (6) we would add an 
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function (6) is sufficient. Since in this case, with respect to time 𝑡𝑡, we have a cubic 
equation. As you know, third-degree splines accurately describe a variety of highly 
curved profiles.

Part 2.
Down, descent. For it, in equation (5), the gravity term will be written with a plus sign

𝑚𝑚 𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑 = −𝐹𝐹𝑎𝑎,𝑦𝑦(𝑣𝑣) + 𝑚𝑚𝑚𝑚.                                       (9)

Solving equation (9), we get 

𝑣𝑣𝑦𝑦,2 = 𝑚𝑚𝑡𝑡2 − 𝜎𝜎1𝑡𝑡2
2 − 𝜎𝜎2𝑡𝑡2

3, (10)

where

𝜎𝜎1 = 𝑏𝑏𝑏𝑏
2𝑚𝑚 , 𝜎𝜎2 = 𝑐𝑐𝑏𝑏2

3𝑚𝑚 , (11)

𝑣𝑣𝑦𝑦,2 –the speed component before hitting the target, its final value. 
Part 3.
We solve the first equation of (1) for 𝑣𝑣𝑥𝑥 . In this case

𝐹𝐹𝑎𝑎,𝑥𝑥 = 𝑎𝑎𝑣𝑣0,𝑥𝑥 + 𝑏𝑏𝑣𝑣𝑥𝑥 + с𝑣𝑣𝑥𝑥
2 .         (12)

Solving (1) and taking into account (12) we will get

𝑣𝑣𝑥𝑥,2 = 𝑣𝑣0,𝑥𝑥 − 𝑣𝑣0,𝑥𝑥
𝑚𝑚 𝑎𝑎𝑡𝑡𝑠𝑠 − 𝜎𝜎3𝑡𝑡𝑠𝑠

2 − 𝜎𝜎4𝑡𝑡𝑠𝑠
3,                        (13)

where 𝑣𝑣𝑥𝑥,2 - is the value of the velocity projection before falling, hitting the target, this is the final 
velocity, and 

𝜎𝜎3 = 𝑏𝑏𝑏𝑏1
2𝑚𝑚 ,  𝜎𝜎4 = 𝑐𝑐𝑏𝑏12

3𝑚𝑚 ,  𝑘𝑘 = 𝑘𝑘1 ± 𝑚𝑚.  

From the formula 𝑡𝑡𝑚𝑚 𝛼𝛼′ = 𝑣𝑣𝑦𝑦,2
𝑣𝑣𝑥𝑥,2

, the angle of incidence of 𝛼𝛼′ can be determined.

And 𝛼𝛼′ > 𝛼𝛼. In case of medium resistance the flight range decreases. In an
environment that has no resistance, the range will be longer. Knowing 𝛼𝛼′ and 𝑥𝑥𝑠𝑠 we 
can estimate the strength or the drag resistance level of air.

Equations (6) to (13) allow iterative solutions and refinement of coefficients. The 
fact is that in the first approximation and at the first, initial iteration, we can take the 
k≈g - acceleration of free fall. 𝑘𝑘1 is determined by experimental data using formula 
(13) and 𝑥𝑥2. And equation (7) must be used twice within the iteration cycle. When
iterated, the values of 𝑘𝑘1 either decrease or increase with a certain fine ℎ𝑏𝑏 = (0.01 ÷
0.05)𝑘𝑘1 step size. This is determined from the analysis of the obtained numerical 
results.  So to speak, visual control of values with different variations.
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Alternately: first as (7) and then as (10). 
 
                𝑣𝑣𝑦𝑦,1 = 0 = 𝑣𝑣𝑦𝑦,0 − 𝑔𝑔𝑡𝑡1 − 𝑣𝑣0,𝑦𝑦

𝑚𝑚  𝑎𝑎𝑡𝑡1 − 𝜎𝜎1𝑡𝑡1
2 − 𝜎𝜎2𝑡𝑡1

3.                    (14) 
  
(14) are equations (5), (7) written for a time 𝑡𝑡1. This is the time of maximum

elevation. 
Signs for 𝑘𝑘1 are determined after correction, re-clarification of 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡𝑠𝑠, 𝑣𝑣0,𝑦𝑦, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 
𝑥𝑥2, 𝑣𝑣𝑓𝑓 from the experiment. That is, after iterative calculations. Formula (7) is written 
in such a way as to find unknown coefficients a, b, c. And formula (10) is written as
such in order to calculate the velocity value for any given time value 𝑡𝑡.

We have some experience in developing algorithms and compiling our computing
programs in C++ and Visual Fortran. Which make it possible to make detailed
calculations at different variations of angles of attack, flight path and initial
conditions of departure from the launcher. Taking into account the iteration. Our 
calculation scheme can include algorithms for fast, emergency determination of the
flight path of projectile 1 from experimental data of the induced laser beam and
computer analytical calculation of its flight path.

All the above is supplemented and explained by Figure 4: 1-trajectory in the 
presence of air resistance; 2 - trajectory in the absence of air resistance; 𝑣𝑣0- initial 
speed; 𝑣𝑣𝑓𝑓 = 𝑣𝑣2- finishing speed; 𝛼𝛼′- drop angle in case of air resistance accounting;
𝑥𝑥2- maximum flight range.

Figure 4 - Diagram of projectile flight.

Figures 5 show a diagram from which the effective areas of aerodynamic 
interaction of two shells or two missiles can be calculated. If 𝛿𝛿1 ≈ 0, the probability 
of success can be taken approximately as 1. Next, we assumed that the spread of 𝛿𝛿1
values obeys the function of the normal distribution of random variables. Based on
this approach, it is possible to estimate the approximate number of shells launched so
that, with a probability of, for example, 95%, be sure that an enemy missile or
projectile will be shot down.
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The two-dimensional probability density function for this representation is [12]
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(15) is the frequency of projectiles flying through the circle area with a radius of r3. 
It turns out that in order to successfully hit a missile (or projectile) with an attacking missile 
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Figure 5 - Diagram of mutual location.

The two-dimensional probability density function for this representation is [12]
𝑝𝑝(𝑟𝑟, 𝜑𝜑) = 1

2𝜋𝜋 𝑒𝑒
−𝑟𝑟

2
2 . 

Hence, the probability itself for an arbitrary 𝑟𝑟3 radius will appear as the next
double integral

𝑃𝑃(𝑟𝑟, 𝜑𝜑) = 1
2𝜋𝜋 ∫ ∫ 𝑒𝑒−

𝑟𝑟2
2 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜑𝜑2𝜋𝜋

0
𝑟𝑟3
0 .              (15)

(15) is the frequency of projectiles flying through the circle area with a radius of
𝑟𝑟3. 

It turns out that in order to successfully hit a missile (or projectile) with an 
attacking missile (or projectile), it is best to fly, catch up, and hit it from behind. First, 
track it from behind, and only then catch up and hit it while flying along its own
trajectory. In other cases of approach (attacks from the front or side), the likelihood
of missing or not hitting the target (slipping past) will be greater.

And finally, the last. In sufficiently low earth orbits, it is possible to arrange a 
device that will emit very powerful narrowly directed laser beams, Figure 6. In this 
case, very strong one-way heating of the entire side surface of the rocket or projectile 
can be carried out. The entire adjacent wave zone will also be heated. The highly 
heated air in the wave zone will significantly change the physical characteristics and
physical condition of this section of the shock wave front. That is, in one half-space, 
shock waves will overheat greatly, and in another half-space, there will be no
changes. As a result, the asymmetrical aerodynamic drag of these wave portions will 
cause the projectile path to deviate from the original intended course. Thus, our goal
will be achieved, the trajectory will change and the projectile will hit another 
unnecessary point.
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heated air in the wave zone will significantly change the physical characteristics and
physical condition of this section of the shock wave front. That is, in one half-space, 
shock waves will overheat greatly, and in another half-space, there will be no
changes. As a result, the asymmetrical aerodynamic drag of these wave portions will 
cause the projectile path to deviate from the original intended course. Thus, our goal
will be achieved, the trajectory will change and the projectile will hit another 
unnecessary point.
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2𝜋𝜋 𝑒𝑒
−𝑟𝑟

2
2 .  
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𝑃𝑃(𝑟𝑟, 𝜑𝜑) = 1
2𝜋𝜋 ∫ ∫ 𝑒𝑒−

𝑟𝑟2
2 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜑𝜑2𝜋𝜋

0
𝑟𝑟3
0 .              (15)

(15) is the frequency of projectiles flying through the circle area with a radius of
𝑟𝑟3. 
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track it from behind, and only then catch up and hit it while flying along its own
trajectory. In other cases of approach (attacks from the front or side), the likelihood
of missing or not hitting the target (slipping past) will be greater.

And finally, the last. In sufficiently low earth orbits, it is possible to arrange a 
device that will emit very powerful narrowly directed laser beams, Figure 6. In this 
case, very strong one-way heating of the entire side surface of the rocket or projectile 
can be carried out. The entire adjacent wave zone will also be heated. The highly 
heated air in the wave zone will significantly change the physical characteristics and
physical condition of this section of the shock wave front. That is, in one half-space, 
shock waves will overheat greatly, and in another half-space, there will be no
changes. As a result, the asymmetrical aerodynamic drag of these wave portions will 
cause the projectile path to deviate from the original intended course. Thus, our goal
will be achieved, the trajectory will change and the projectile will hit another 
unnecessary point.
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 And finally, the last. In sufficiently low earth orbits, it is possible to arrange a device that 
will emit very powerful narrowly directed laser beams, Figure 6. In this case, very strong one-
way heating of the entire side surface of the rocket or projectile can be carried out. The entire 
adjacent wave zone will also be heated. The highly heated air in the wave zone will significantly 
change the physical characteristics and physical condition of this section of the shock wave 
front. That is, in one half-space, shock waves will overheat greatly, and in another half-space, 
there will be no changes. As a result, the asymmetrical aerodynamic drag of these wave portions 
will cause the projectile path to deviate from the original intended course. Thus, our goal will be 
achieved, the trajectory will change and the projectile will hit another unnecessary point.

Figure 6 – Shock Thermal Impact Diagram wave zone and half side projectile surface

Explanations to Figure 6:1 – projectile; 2, 3 lines of shock wave fronts; 4-laser unit; Q is a 
plane that divides the entire space into two half-spaces 5 and 6.

Such influence or impact on the projectile is much better, easier, and more effective than 
the traditional way when they try to completely burn, melt, destroy, or detonate this shell or 
rocket with a laser beam. With this method, an excessively large, almost impossible, very costly 
overspending of thermal energy will be required. This is far from reality. 

3. Discussion

The semi-empirical theory developed by us, however, is suitable only for the flight and fall 
of bodies in a field of constant gravitational attraction. If there were no gravity, it would be 
impossible to close the system of equations to calculate unknown semi-empirical coefficients, 
which simply allow you to take into account the resistance of the medium to the flight of the 
projectile as a nonlinear function of time.

As a development of this approach, we plan to further consider the following possibilities. To 
develop a semi-empirical theory, when the flight of a rocket or a projectile occurs with a variable 
mass. For example, this is the real situation when gradual consumption of fuel takes place.

In work [15], it is noted that in previous research the function of medium resistance in the 
following different types: F(v)=av, F(v)=bv2, F(v)=av+bv2 were used. However, the further use of 
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Such influence or impact on the projectile is much better, easier, and more
effective than the traditional way when they try to completely burn, melt, destroy, or 
detonate this shell or rocket with a laser beam. With this method, an excessively 
large, almost impossible, very costly overspending of thermal energy will be
required. This is far from reality. 

3.  Discussion.

The semi-empirical theory developed by us, however, is suitable only for the 
flight and fall of bodies in a field of constant gravitational attraction. If there were no
gravity, it would be impossible to close the system of equations to calculate unknown
semi-empirical coefficients, which simply allow you to take into account the 
resistance of the medium to the flight of the projectile as a nonlinear function of time.

As a development of this approach, we plan to further consider the following
possibilities. To develop a semi-empirical theory, when the flight of a rocket or a
projectile occurs with a variable mass. For example, this is the real situation when 
gradual consumption of fuel takes place.

In work [15], it is noted that in previous research the function of medium
resistance in the following different types: 𝐹𝐹(𝑣𝑣) = 𝑎𝑎𝑣𝑣, 𝐹𝐹(𝑣𝑣) = 𝑏𝑏𝑣𝑣2, 𝐹𝐹(𝑣𝑣) = 𝑎𝑎𝑣𝑣 +
𝑏𝑏𝑣𝑣2 were used. However, the further use of this formula differs from our method.
Namely, these equations for 𝐹𝐹(𝑣𝑣) used previously known works to solve the 
following differential equation [15]

𝑑𝑑(𝑣𝑣 cos 𝜗𝜗)
𝑑𝑑𝜗𝜗 = 𝑣𝑣𝑣𝑣(𝑣𝑣)

𝑔𝑔 ,                   (16)

where 𝑣𝑣 = 𝜓𝜓(𝜃𝜃). As indicated in the same source [15], the integration of equation
(16) with an unknown  function 𝑣𝑣 = 𝜓𝜓(𝜃𝜃) and with unknown coefficients 𝑎𝑎, 𝑏𝑏 has 
insurmountable difficulties. That is, further calculation techniques and methods for 
obtaining final results differ from ours. This is easy to see from [15].

You can shoot down a rocket or a projectile with a direct hit. It is also possible to
change its trajectory based on the explosion of another projectile in close proximity to
it. These are common techniques. However, our method is designed as a backup for
the worst-case scenario, in the event of an invasion into the shock wave zone, it is 
also possible to change the flight path. As a result, even this so-called "weak impact"
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this formula differs from our method. Namely, these equations for F(v) used previously known 
works to solve the following differential equation [15]

where v=ψ(θ). As indicated in the same source [15], the integration of equation (16) with an 
unknown  function v=ψ(θ)  and with unknown coefficients a, b has insurmountable difficulties. 
That is, further calculation techniques and methods for obtaining final results differ from ours. 
This is easy to see from [15].    

You can shoot down a rocket or a projectile with a direct hit. It is also possible to change 
its trajectory based on the explosion of another projectile in close proximity to it. These are 
common techniques. However, our method is designed as a backup for the worst-case scenario, 
in the event of an invasion into the shock wave zone, it is also possible to change the flight path. 
As a result, even this so-called "weak impact" can achieve the desired goal. Then the projectile 
or rocket will not hit the intended point, at which the projectile was originally aimed at. 

Laser correction of the heading is possible only if there is no rotation of the projectile. 
Consideration of the question of the rotation of the rocket itself and the effect of this rotation on 
the gas boundary layer is a large separate and deep topic for self-study. So far, we do not touch 
on this issue.

4. Conclusions

 4.1. A physical hypothesis is proposed that it is possible to change the design trajectory of 
the projectile on the basis of mechanical action on the entire volume of shockwave zones with a 
unilateral, asymmetric presence of the second projectile. Deviating from the original trajectory 
results in a positive result when it comes to a defensive task. 

 4.2. A new semi-empirical model has been developed and compiled, which allows you to 
calculate the trajectory of the projectile taking into account the air resistance to movement. 
From the initial experiment, only four easily detectable quantities are used: the initial departure 
speed v0, the maximum elevation ymax, the maximum range x2, and the total flight time. The 
design scheme can be used in the design and operation of shells and missiles both guided, 
homing and unguided. The air resistance force is modeled as a nonlinear function of velocity. It 
is represented in the form of a polynomial of the third degree from time to time. 

 4.3. The physical idea that external powerful laser radiation can heat the side surface of 
the projectile and half-space of the entire zone of shockwaves is proposed. The asymmetrical 
thermal state on both sides of the missile may cause the missile or projectile to deviate from the 
previously assigned flight path. This circumstance is also in favor of the proposed idea. 
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5. contribution of the authors

1 author: general guidance, problem setting, solving theoretical issues, calculations, 
conclusion.

2 author: formula checking, calculation checking, article design, typing.
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О возможности изменения траектории снаряда или ракеты
на основе аэродинамического воздействия в зоне ударных волн

Аннотация. Обоснована физическая гипотеза о том, что можно изменить расчетную 
траекторию снаряда на основе механического воздействия на весь объем волновых зон 
сопротивления при одностороннем, несимметричном вторжении второго снаряда. Отклонение 
от первоначальной траектории приводит к положительному результату, когда речь идет об 
оборонительной задаче. 

Разработана и составлена новая полуэмпирическая модель, которая позволяет рассчитать 
траекторию снаряда с учетом сопротивления воздуха движению. В новой модели рекомендовано, 
чтобы в предстоящих экспериментах использовать только четыре легко определяемые 
величины: начальная скорость вылета v0, максимальная высота подъема ymax, максимальная 
дальность полета x2 и полное время. Расчетная схема использует итерационные вычисления, на 
основе которых уточняются значения численных коэффициентов в полуэмпирической модели. 
Обоснована физическая идея о том, что внешнее мощное лазерное излучение может нагревать 
боковую поверхность снаряда и всю зону волновых скачков уплотнения с одной стороны 
полупространства, то есть это односторонний нагрев. Несимметричное тепловое состояние с 
двух сторон ракеты может привести к отклонению ракеты или снаряда от прежде назначенного 
курса. Данное обстоятельство также в пользу предлагаемой идеи. Расчетная схема может 
найти применение при проектировании и эксплуатации снарядов и ракет как управляемых, 
самонаводящихся, так и неуправляемых.   

Ключевые слова:  волновой фронт, снаряд, ракета, аэродинамическое, сопротивление, 
расчеты, траектория, итерация. 
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Соққы толқындары аймағындағы аэродинамикалық
әсер ету негізінде снаряд немесе зымыран траекториясын өзгерту мүмкіндігі 

Аңдатпа. Мақалада екінші снарядтың біржақты, симметриялы емес, кіруі кезінде кедергінің 
толқын аймақтарының барлық көлеміне механикалық әсер ету негізінде снарядтың есептік 
траекториясын өзгертуге болатындығы туралы физикалық гипотеза негізделген. Бастапқы 
траекториядан ауытқудың қорғаныс міндеті туралы сөз болғанда бұл оң нәтижеге әкеледі.

Қозғалысқа ауа кедергісін ескере отырып, снарядтың траекториясын есептеуге мүмкіндік 
беретін жаңа жартылай эмпирикалық модель әзірленді және жасалды. Жаңа модельде алдағы 
эксперименттерде оңай анықталатын төрт шаманы ғана пайдалану ұсынылады: v0 – ұшып 
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шығуының бастапқы жылдамдығы, ymax көтерудің ең жоғары биіктігі, ұшудың ең жоғары 
қашықтығы x2  және толық уақыт. Есептеу схемасы итерациялық есептеулерді пайдаланады. 
Олардың негізінде жартылай эмпирикалық үлгідегі сандық коэффициенттердің мәні 
нақтыланады.  Сыртқы қуатты лазерлік сәулелену снарядтың бүйір бетін және тығыздаудың 
толқын секірістерінің барлық аймағын қыздыра алады деген физикалық идея негізделген. 
Кеңістіктің бір жарты жағынан әсер ету, яғни бұл біржақты жылыту. Зымыранның екі жағынан 
симметриялық емес жылу жағдайы зымыранның немесе снарядтың бұрын белгіленген 
бағыттан ауытқуына әкелуі мүмкін. Бұл жағдай да ұсынылып отырған тұжырымды айқындауға 
көмектеседі. Есептеу схемасы снарядтар мен зымырандарды жобалау және пайдалану кезінде 
басқарылатын, өздігінен басқарылатын және басқарылмайтын түрде де қолданылуы мүмкін.

Түйін сөздер: толқын аймағы, снаряд, ракета, аэродинамика, кедергі, есептеулер, траектория, 
итерация. 
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