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Abstract. The paper considers some ways of representing probabilistic
causal models using Bayesian network theory (hereafter referred to as BN).
These models describe well problems with different types of uncertainty. The
theory of BN extended with some additional types of nodes called influence
diagrams or IDs. Influence diagrams make it possible to consider a number of
solution options, to evaluate them quantitatively, and to select the best of the
considered options. However, it is practically impossible to find an optimal
solution in an ID. It is not even possible to create a system of linear constraints
on some variables in an ID, although there is a large class of practical problems
with such constraints.

The paper describes the idea of extending ID to describe linear constraints
on some variables of the BN. In the future, it will help to use the ideas of linear
programming in ID to find an optimal solution in the sense of LP for problems
with different types of uncertainties and causal relationships between some
variables. This work has been done under grant AP19679142 "Search for
optimal solutions in Bayesian networks in models with linear constraints and
linear functionals. Development of algorithms and programs " (2023-2025)
of MES RK. This project will develop the theory for finding optimal solutions
in Bayesian networks. Optimality will be understood in the sense of linear
programming - a system of linear constraints, extremum of a linear functional.
The theory will be implemented in a software product.
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Linear constraints on variables in influence diagrams for causal models

Introduction

Graphical models, in particular Bayesian networks and influence diagrams, can be used to
solve a variety of fairly complex problems with different types of uncertainty. The basics of
Bayesian networks can be found in [1, 2, 3, 4]. Such problems often involve causal relationships
between different elements. These graphical models are usually based on directed acyclic
graphs. The nodes in a BN are variables that are probabilistic in nature. There are different
causal relationships between the variables. Calculations in BN allow us to calculate the values
of some variables based on known variables, causal relationships between variables, evidence
in some variables. Calculations in Bayesian networks are quite extensive. If there are 8-10 nodes
in the network, manual calculations are already extremely difficult. The presence of evidence in
some nodes makes calculations even more difficult. Fortunately, the theory of Bayesian network
computation is well developed and implemented in many software products. In this paper we
will refer to the well-known software product HUGIN EXPERT [5].

Bayesian networks are currently the subject of intense research. Interesting ideas can be
seen in works [6 - 11]. Gradually, however, the capabilities of BNs became insufficient for solving
many practical problems. New types of nodes were added to BNs. This made it possible to solve
new classes of problems, in particular to search for and analyse solutions in problems with
different causal relations and containing different types of uncertainties. It became possible to
quantitatively evaluate different solutions to a problem and to select the best solution according
to certain characteristics. These networks are called influence diagrams.

Then it was necessary to create various additional constraints on individual variables.
Unfortunately, IDs cannot perform such operations efficiently. It is even more difficult to perform
computations in constrained networks than to perform computations in conventional IDs.
The issues of extending the capabilities of IDs for creating additional constraints and finding
solutions to such problems are discussed in this paper.

First, the paper will construct examples to illustrate the current methods for finding the best
solutions in ID. Such solutions are, of course, not generally optimal. However; in some cases the
solutions may coincide with the optimal ones. In the future, the examples that are considered
will be supplemented with linear constraints on some of the variables. Of course, IDs do not have
mechanisms to solve such problems. However, the simplest problems can be solved artificially.
As a consequence, neither the HUGIN EXPERT software package, nor any other software package
that implements the ideas of IDs, allows the use of linear constraints in the problems, as well as
more complex constraints.

The examples are for educational purposes only. Any questions about the suitability of the
graphical model for a considered task are incorrect. The HUGIN EXPERT software is used to
create the training examples.

The methodology

A tutorial example from the BN literature will be considered here. In this example, several
options for solving the given influence diagram are identified and then quantitatively evaluated.
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The best of the considered options is selected. However, it should be noted that the best of the
considered options may not necessarily be the optimal solution for a number of reasons. For
example, we may not be sure that we have considered all the options. Another reason could be
that the mechanisms of influence diagrams do not adequately build the desired model. In the
following, this example will be adapted in such a way that the capabilities of influence diagrams
are not sufficient to build even the necessary set of solution options.

The methods used in this paper are Bayesian networks and their evolution - influence
diagrams. BNs allow the user to construct a set of solutions, compare these solutions by some
criterion, and select the best solution from among them. It should be noted, the chosen solution
will not be optimal. In real-world problems, it is usually necessary to find a solution that is
optimal in some sense. The simplest problems are linear programming problems. On the one
hand, we have a set of variables that are related to each other by probabilistic relationships. On
the other hand, a number of linear constraints on some of the variables form a set in which it is
necessary to find the optimum of some linear functional. The paper considers the necessity of
introducing the system of linear constraints on a set of variables into the method of influence
diagrams.

Let us consider a well-known example from the literature on BN. The leaves of an apple tree
have fallen off. The cause of the leaf drop may be either tree disease or drought, or both. The
owner must decide whether to treat the tree or not. Treatment offers the hope of a certain crop
next year and some profit. However, treatment is quite expensive and if treated, the risks must
be assessed:

e The tree is healthy and the cause is simply insufficient watering. The money for treatment
is wasted.

e The tree is sick. Treatment has helped. Next year's crop will be good and will justify the cost
of treatment.

e The tree is sick. The treatment has not worked. Next year's crop will be poor and the cost of
the treatment has not been justified.

Figure 1 shows the influence diagram for this problem. Let us describe the variables and functions in
this influence diagram.

Figure 1. Influence diagram for finding a treatment strategy for an apple tree
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The apple tree is observed for two years. In the first year, leaves are likely to fall (Loses) for two
reasons: the tree is sick (Sick) or the tree is withered (Dry), poorly watered. Of course, leaves may
fall for a combination of these reasons. In the second year we expect a causal relationship both from
the old Sick node to the new Sick_1 node and from the old Dry node to the new Dry_1 node. This is
because, for example, if we expect a tree to be sick now, it is likely to be sick in the future.

By observing the tree, the owner can treat the tree to get rid of a possible disease. If he thinks
the leaf loss is due to drought, he can save his money and just wait for rain. Treating can help the
tree with some probability. Treatment is quite expensive and the benefits of treatment need to
be assessed. Will the crop justify the cost of treating the apple tree? The tree treatment action is
now added as a decision node in the BN (Treat). This node is no longer a BN node. The Bayesian
Network becomes an Influence Diagram.

In the second year, the apple tree may be leafless for the same reasons (Disease_1 and
Drought_1). But the disease in the second year will depend on two reasons: whether it was sick
in the previous year (Sick) and whether it was treated (Treat). See Figure 1.

The decision node Treat has the states "treat” and "not". We have added a link from Treat
to Sick_1. This is because we expect the treatment to affect the future health of the tree. We
now need to specify a usefulness function that allows us to calculate the expected usefulness
of the solution. This is done by adding auxiliary nodes to the diagram, each contributing to the
overall utility. The Cost usefulness node reflects information about the cost of processing, while
the Harv node represents the usefulness at harvest time. Here the usefulness depends on the
health of the apple tree. To get a quantitative representation, we need to construct Conditional
Probability Tables (CPTs) for all the nodes in this influence diagram.

Table 1 and Table 2 show the marginal probabilities of the variables sick and dry. Table 3
shows the probability dependence of the variable Loses on the variables Sick and Dry.

Table 1. Marginal probabilities of Sick

Sick
Edit Functions W e
sick 0.1
not 0.9

Table 2. Marginal probabilities of SickDry

Dry
Edit Functions  Wiew

oy 0.1
not 0.9
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Table 3. Dependence of Loses on Sick and Dry

Loses

Edit Functions  “iews

Sick
oy not oy not
0.95 0.85 0.84a 0.0z
0.05 015 014 0.98

Table 4 shows the dependence of the variable Sick_1 on the variables Sick and Treat. Disease
in the second year depends on the treatment performed and whether the tree was diseased in
the first year. Table 5 shows the dependence of the variable Dry_1 on the variable Dry. Table 6
shows the dependence of the variable Loses_1 on the variables Sick_1 and Dry_1

Table 4. Dependence of Sick_1 on Sick and Treat

Sick_1

Edit Functiohs  iew

Table 5. Dependence of Dry_1 on the variable Dry

Dry_1
Edit Functions “iew
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Table 6. Dependence of Loses_1 on variables Sick_1 and Dry_1

Loses_1

Edit Functions ]y

Table 7. Willingness to pay for tree treatment

Treat
Edit Functions  “Wiew
treat ]

not 1

Table 7 describes the owner's marginal willingness to pay for treatment of the tree. Table 8 shows
that it would cost $8,000 to treat an apple tree. Table 9 shows the profit from a sick and healthy tree.
Table 8. Treating an apple tree will cost $8,000 dollars

Cost
Edit Functions  “iew
Treat
LIl

Table 9. Willingness to pay for tree treatment
Harv

Edit Funclions  View

Sick_1 Sick ot
LItility 2000 20000
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Let's evaluate several strategies for the behaviour of the apple tree owner.
1. Strategy 1: The owner does not spend money on treating the apple tree, believing that the
cause of the leaf fall is drought. The solution is shown in Figure 2.

1

[ 13011.00

Figure 2. The owner does not spend money on treatment

The expected profit in this case is 18011 dollars.

2. Strategy 2. The owner spends no money on treating the apple tree, believing that the leaves
are falling because of the drought. But it turns out that the tree is sick. The solution is shown in
Figure 3.

v appled I ’.
- @ODry !
= {1 Dry_1 |
» {0 Loses
» (0 Loses_1 @
» {0 Sick
v @@ sSick 1

I 100.00 sick
[ =3000.00

1 - not Trea
T 1 i}

L4

v @ [OHary
[T 1 300000

i >

A

Figure 3. The owner does not spend money on treatment, but the apple tree is sick

The expected profit in this case is $3,000. A sick tree will yield little profit.
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3. Strategy 3. The owner treats the apple tree, and the tree is sick.

apple3

v apple3
» (OO0
= (ODr_t1
» (0 Loses
» (00 Loses_1
» (0 Sick
v @@ Sick_1
N 100.00 sick
*-5000.00

v 4[] Cost

I ] -=2000.00
v @ [JHarv

[T 1 3200000

Figure 4. The owner treats the apple tree, but the tree is not cured

The expected profit in this case is -5000 dollars. The diseased tree will yield little profit
($3000), and $8000 was spent on treatment. The solution is shown in Figure 4.

4. Strategy 4. The owner treats an apple tree, the tree was sick, but was cured. The expected
profitis $12000 (20000 from the sale - 8000 for the cure). The solution is shown in Figure 5.

apple3

v apple3
> @ODry
» ODry_1
» @0Loses
» @0OLoses_1

v @O Sick
I 100.00 sick
= +12000.00

not

—
{ ==} 0

v @O Sick_1
— - sick [ Treatyg

0
B 100.00 not ]
C—m +12000.00 - @

v IO Treat

I 100.00 treat >
== +2000.00
—1 -

Figure 5. An owner treats a sick apple tree, the tree has been cured

JLH. 'ymusnee amvindarsl Eypasus yaimmoik yHusepcumeminiy XABAPIBICHI. N22(147)/ 2024 195
TexHUKA/IbIK FbIALIMOAP HCIHE MEXHOA02USNAD CEPUSIChI
ISSN: 2616-7263. elSSN: 2663-1261



A. Shayakhmetova, A. Akhmetova, A. Abdildayeva, B.N. Litvinenko, A. Zakirova

The examples that have been considered show quite clearly the scope of influence diagrams
in solving practical problems. However, many questions arise about the scope of influence
diagrams. Let us consider just a few of these questions.

[s it possible to specify the cost function for tree treatment in detail? Within reasonable
limits it is. For example, there are several ways to treat a tree, with different costs and different
treatment efficiencies. For example:

o Do not treat the tree, no treatment cost.

o Spend at least $3000 with a probability of curing the tree of about 0.6.

o Spend $5000 with a probability of curing the tree of about 0.8.

o Spend $8000 with a probability of curing the tree greater than 0.9.

The Treat node and its associated Cost and Sick_1 nodes will change. The conditional
probability tables (10, 11, 12) for these changes are given below.

Table 10. Willingness to pay for tree treatment

Treat
Edit Functions

Table 11. Cost of treatment of apple tree

Cost

Edit Functions  View
Treat s000 000 2000
LIility -2000  -5000  -3000

Table 12. Probabilities of apple tree recovery

Edit Functions
a000 3000

sick not sichk not sick
0.3 0.01 0.4 ooz 099
0.7 0.949 0.6 0.9a 0.0
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The user only selects the best option from the options considered. There is no certainty that
the most interesting options will be omitted. It would be nice to have a mechanism to point the
user to more interesting options. Unfortunately, IDs do not have such capabilities.

In practical problems, there are often linear constraints on some (not all) variables in a
ID. For example, a owner may have several trees that are specific and require different costs.
However, resources are finite. The natural question of the most efficient allocation of resources
cannot be solved by a ID. In the simplest cases, such problems can be solved using artificial
methods. However, there is no general approach to solving such problems in IDs. Figure 6 shows

an example of such a problem.
CIIED CRED
CmD <D
Gy o) Comy G
> <) (D)
[ |
Figure 6. Example with two diseased trees

Treata

The owner has two diseased trees: an apple and a pear. The owner can start treating these
trees. However, there is no money to fully treat both trees - only $8000 is available. You can
either refuse to treat the trees or choose one of three treatment modes for each tree. Each
treatment mode costs a certain amount of money. The less a treatment costs, the less likely it
is that the tree will be cured. Figure 6 shows a Bayesian network with two diseased trees. We
leave the basic probabilistic constraints for this example the same as in the example discussed
earlier. Only new relationships between the variables are given below.

Table 13. Treatment options for apple trees

Treata

Edit Functions ey
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Table 13 summarizes the treatment options for apple trees. Table 14 shows the treatment
options for pear tree. Table 15 shows the cost of treating the apple tree depending on the
treatment option. Table 16 shows the cost of treating the pear tree depending on the treatment
option and the funds already spent on treating the apple tree. Since the treatment funds are
only $8000, the excess over this amount is represented by an arbitrary, rather large number. In
our case, the loss is $99,99999. Figure 7 shows the solution to this problem if the tree owner
refuses any treatment, hoping that the leaves will fall only from lack of irrigation. The expected
gain is 18011 + 10080 = 28091 dollars.

Table 14. Pear tree treatment options

Treath

Edit Functions  Wiew

Table 15. Cost of treatment of an apple tree

Edit Functions  View
Treata Taoo 000 3000
[_Hility -7go0  -5000  -3000

Table 16. Cost of treatment of pear tree

Costh

Edit Functions  Wiew
4 Treata 7000 a000 a000 1]

Treath G000 5000 3000 1] EO00 a000 anoo 1] EOO0 a000 3000 0 E000 5000 a000 0
K Utility -99999 999585 -99999 0 -69999  -885899  -3000 1] -98555  -5000 -3000 0 -B000 -5000 -3000 0
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» Q00!
» (D0Losesa
» (0Losesa_t
» (0 Losesh
» (QD0Losssh 1
» OOk
» (QD03icka_t
» QDO3ick
» QO Sik_t
+ DO Treats
'
v $0Costh i
13 ik}
v ¢00ush
11 ]
v #0Hama
I 1801100
v ®OHavh
0 1008000

4

Figure 7. Variant of solving the problem with two diseased trees
Findings/Discussion

Two examples of the use of IDs are considered in this paper. These examples illustrate
the range of problems that can be solved by IDs methods. The second example considers the
simplest variant of a linear constraint on two variables. An artificial way of solving this problem
using IDs is considered. It is concluded that it is impossible to use the IDs mechanism to solve
problems with linear constraints on some variables.

Conclusion

The development of ideas of constructing linear constraints for some variables of influence
diagrams is the first step towards solving practical problems of finding the optimal solution
of linear programming problems in the presence of various types of uncertainties. It is also
assumed that some variables may have probabilistic relationships among themselves.
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194-Papabu amviHdarbl Kazax yammeulk yHugepcumemi, Aamamel, Kazakcmax
2JL.H. 'ymunee amviHdarsl Eypaszus yammuik yHusepcumemi, Acmata, Kazakcmat

Anpgarna. Makanana Baiiec »xesisiepiniy, TeopusicbiH (6yaH api BXK) KosiiaHa OTBIPHII, BIKTUMAJIIBIK
cebemn-canfapblK MOJeabAepAi YCbIHYABIH, Kelbip ajicTepi KapacTeIpbLiaabl. bysn Mopenbjep
apTypJii 6esricizikTepi 6ap TancelpMasapApbl xKakcbl cunattaipl. BXK Teopuscel TyHinaepaiH kelbip
KOCBhIMILIA TypJiepiMeH TOJIBIKTBIPBLJIFAH dCep eTy AuarpaMMasapbl HeMece 9/ femn artanafbl. 9/]
KOIITEeTeH IIelliM/ep/i KapacTbIPyFa, 0JIapAbl CAHABIK 6aFajiayFa KoHe KapacThIpblJIFaH HYCKaapblH
illiHeH eH »KaKCbIChIH TaHAAyFa MYMKiHAik 6epefi. [Jlerenmen, 9/l-Ae oHTalbI WemiM/i Taby MYMKiH
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eMec. 9/l-/1e Kellbip aliHbIMaJIbLIapFa ChI3BIKTHIK IIEKTEY/Iep KYHeciH Kypy MyMKiH eMec, JleTeHMeH
MYH/Ial leKTey/JepMeH MPaKTUKAJIbIK eCeNTePAiH Y/IKeH Kaachl 6ap.

Makanaga kei6ip BXX allHbIMasblIapbIHJAFbl ChI3BIKTHIK IIEKTeyJlepAi cunartay yuiH 9/-Hi
KEHEUTY UZiesChl cUNaTTa faH. bosamakra 6y/1 ap TypJai 6enrici3ziikTep MeH kei6ip altHbIMasbLIAD
apachlHAaFbl cebemn-calAapJblK, 6GalJaHbICTapbl 6ap ecenTep VIIIH ChI3BIKTBIK 6argapsiaMasiay
MaFbIHACbIH/Ia OHTANJIbI lIelliMAi Taby yiiH 9/l-/a chI3BIKTHIK 6aFAap/iaMasay ujaesiapblH KOJAJaHyFa
keMekTecei. Kymbic «AP19679142 ChI3BIKTHIK IIEKTey/ep MEeH ChI3bIKThIK QYHKIIMOHA//bIFbI 6ap
MozesibJiepae baliec xesiziepiHZe OHTaN/IbI MeliMAepai Taby. AITOpUTMAEP MeH GaFJapsiaMasiapibl
KYpy» FPaHTTBIK, KapKbLIaH/bIpy Heridinae opbiHAanAbl (2023-2025x0x.). OHTaNUIbLIBIK ChI3bIKTBIK
GafFmapJsiaMasiay MaFbIHAChIH/IA -ChI3BIKTBIK ILIEKTeyJep KyHeci, ChI3bIKTHIK (QYHKIMOHAIbIH
3KCTpeMyMbI TYCiHinei. Teopus 6aFaap/iaMasibIK 6HIM/Ee )Ky3€ere acbIpblaazbl.

KinTtik ce3gep: baiiec »esici, 6aFbITTanfaH auukiaai rpaduk, rpadukasblK MOAesb, JaJjel,
JaJiesiieMesiepZi TapaTy, apTThl bIKTUMabIKTap KecTeci, acep eTy AuarpaMmMalsiaphbl.

A. IlllasxmeToBa*!, A. AxmeToBa’, A. A6aguinaaera’, H. IlurBunenko!, A. 3akupogna?
19a-Papabu amviHdarsbl Kazak yammulK yHugepcumemi, Aamameol, Kasakcmat
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JInHelHbIe OrpaHU4Y€eHHUA NepeMEeHHbIX B JUarpaMmMax BJAMSHMA AJ151 IPUYUHHO-CJIeJCTBEeHHBIX
MozeJien

AHHOTanus. B craTbe paccMaTpUBaIOTCA HEKOTOpPBIE CIIOCOOBI MPeACTaBIEHUs] BEPOSATHOCTHBIX
NPUYUHHO-CJIe[ICTBEHHBIX MOJieJIel C HCNOJb30BaHUEM TeOpUHU 0alleCOBCKUX ceTel (B AajibHelleM
BC). /lanHble MOJe/U XOPOIIO OMUCBHIBAIOT 33/ja4d C Pa3/IMUHbIMU BUJAMU HeoNpe/le/leHHOCTEN.
Teopusa BC, fono/iHeHHass HEKOTOPBIMU JOTIOJTHUTENbHBIMU TUTIIAMHU Y3JI0B, Ha3bIBaeTCs AUarpaMMaMu
BUsHUSA, UK /IB. /IB 103BOJISIIOT pacCMOTPETh HEKOTOPOE MHOXKECTBO BAPUAHTOB PELIEHUHN, OLeHUTh
HX KOJIMYECTBEHHO U BbIOPATh Jiydlliee U3 PacCMOTPEHHbIX BapuaHTOB. O/JHAKO MOUCK ONTHMAabHOTO
pewenusa B JIB mpakThyecku HeBo3MoxkeH. B /IB HeBO3MOXKHO Jaxke cO3[4aTh CUCTEMY JIMHEUHBIX
OrpaHUYeHHU Ha HEKOTOpPble NepeMeHHbIe, XOTS CyIIeCTBYeT O0JbLUION KJAacC NpaKTUYEeCKUX 3a/ad
C TaKMMHU OrpaHUYeHUsIMU. B cTaTbe onuceiBaeTcqa ujes pacuimpenus JB ajs onvcaHus JIMHEWHBIX
OrpaHMYeHHU Ha HeKoTopble mepeMeHHble bBC. B ganbHellieM 3TO MOMOXeT HUCHOJb30BaThb UJEU
JIMHEHHOTO NporpaMMupoBaHus B /IB A/ moucka oNTUMaJbHOTO pelieHUss B cMmbicae JIII gus
3a/a4 C pa3/IMYHBIMU BHUJAMH HeOINpeJeIeHHOCTeN UM NMPUYUHHO-CJIEACTBEHHBIMU CBA3SIMU MEXIY
HEKOTOPBIMH NepeMeHHbIMH. PaboTa HalMcaHa B paMKaX I'paHTOBOro ¢puHaHcHpoBaHus AP19679142
«Ilouck onTUMaNbHBIX pellleHU B 6aileCOBCKUX CETSX B MOJEJSIX C JUHEWHBIMU OTPAaHUYEHUSIMU U
JUHEeUHbIMU (YHKIMOHa/MIaMHU. PaspaboTka aaroputmoB u nporpamMm» (2023-2025rr.) MOHB PK. B
paMKax JJaHHOT 0 PoeKTa Gy/ieT pa3paboTaHa Teopus, MO3BOJIAIOLAs HAX0JUThb ONITHMaJIbHbIE pEllIEeHUS B
6aliecoBCKUX ceTsAX. ONTUMaNbHOCTb OyZeT MOHUMAaThCS B CMbIC/IE TUHEHHOT0 MPOrpaMMHUPOBAHUS —
crcTeMa JIMHEWHBIX OTPaHUYEeHUH, 3KCTPEeMYM JIMHeNHOro pyHKIHMOoHaa. Teopust 6yfeT peajnu3oBaHa
B IPOrPaMMHOM NPOAYKTE.

KiroueBsle cioBa: baliecoBckasi ceTh, HallpaBJIeHHbINM allUKJINUYECKU M rpad, rpadpudeckasi MoJieb,
CBUZETEBCTBO, PACIpPOCTPAaHEHUE CBHU/IETEJbCTB, TAabJIMLA YCAOBHBIX BEPOSTHOCTEH, JUarpaMMbl

BJIMAHHA.
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