
Abstract. In modern gear mechanics, transmission mechanisms play a 
crucial role in converting the rotational motion of a driving shaft into the 
rotational motion of another shaft with varying angular speeds and torque. To 
achieve optimal designs for the next generation of transmission mechanisms, it 
is essential to develop mathematical models of their dynamic behavior, conduct 
computer simulations of the meshing geometry of key components, and visualize 
the operation of the mechanism. Despite the widespread use of involute gearing 
in mechanical transmissions, there is ongoing research into new types of gearing 
that offer advantages over traditional systems. The main challenges facing the 
industry include increasing the gear ratio in a single stage, enhancing load 
capacity, and improving efficiency compared to standard gear transmissions. 
This paper presents the results of mathematical and computer modeling, along 
with a comparative analysis of the eccentric-cycloid (EC) engagement with 
the involute gear transmission. Through analytical calculations, the energy-
force parameters of the EC gearbox were determined, equivalent stresses and 
static deflections of transmission shafts were obtained. The paper includes 
the results of static analysis of elements of the new EC transmission, as well 
as an algorithm for computer modeling of contact stresses occurring in the 
engagement. Conclusively, by comparing contact stresses in traditional involute 
gear transmission, calculated using various analytical methods, with those in 
EC engagement determined through computer simulation, the advantages of 
the new transmission type and its potential application in mining equipment 
transmission mechanisms are highlighted. 

Keywords: eccentric-cycloid transmissions, involute engagement, Novikov 
gearing, contact stresses, centrifugal forces.
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Introduction

In modern mechanical engineering, transmission mechanisms play a pivotal role in 
converting the rotational motion of a driving shaft into rotational motion of another shaft with 
varying angular velocities and torque. To achieve optimal designs for transmission mechanisms 
of the new generation, it is necessary to create mathematical models of their dynamic behavior, 
perform computer modeling of the engagement geometry of key components, and visualize the 
mechanism's operation process. Concurrently with the development and improvement of the 
widely used involute gear engagement in mechanical transmissions, there is a continuous search 
for new types of engagement possessing various advantages over the involute gear system.

Modern industry faces several key challenges, including increasing the gear ratio in a single 
stage, enhancing load capacity, and efficiency compared to standard toothed transmissions. 
The standard involute profile, while widely used, has geometric limitations for external toothed 
wheels, including undercuts and a small radius of curvature near the base circle. Special toothed 
wheels with adapted profile geometry are employed to overcome these limitations, opening new 
possibilities in design. Technological innovations such as additive manufacturing and 5-axis 
milling enable cost-effective production of such special toothed wheels. Unlike involute toothed 
wheels, the geometric description of non-involute toothed wheels is often non-standardized, 
making it difficult to determine their properties. One such special tooth profile is the eccentric 
cycloidal gear (EC-gear), which offers advantages over standard involute gears in certain 
applications. This study presents a geometric description of the EC-toothed transmission based 
on a defined set of parameters, including parameters describing the characteristics of the gear 
transmission. This parametric description allows for the analytical determination of contact 
geometry and characteristics without load, which is useful for creating gear transmissions that 
meet practical needs [1-5].

When designing any gear transmissions, especially non-traditional ones, one of the important 
parameters is the determination of contact stresses and contact fatigue strength of the gear teeth.

In the article [6] a mathematical model of the operation of a reducer using a new type of 
engagement of working wheels, one of which is a helical eccentric, and the profile of the other is

based on a cycloidal curve, is built. Such engagement has increased force characteristics and 
allows for high gear ratios in a single stage. A computer program illustrating the kinematically 
coherent motion of ideal geometric figures - end sections of the working mechanism, is created, 
allowing for the determination of numerical characteristics necessary for design, but the article 
lacks research results on testing the new transmission for contact strength.

The stress-strain state (SSS) of the contact engagement largely determines such an important 
parameter of the reducer as the efficiency coefficient. Analytical calculation of contact loads 
always poses significant difficulties for both involute and other engagements with a large 
contact area and a share of transmitted torque during sliding friction. The emergence of 
computer programs has enabled modeling the SSS of  contact, explaining the physical essence 
of the engagement efficiency, and using the obtained results for verification calculations.

The objective of this article is to conduct an analysis of the static strength of elements of the 
new EC engagement and to determine the level of contact stresses arising in the new type of 
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transmission, as well as to perform a comparative analysis of existing studies on determining 
contact stresses. 

The methodology

New EC gear reducers have established themselves as precise and rigid mechanisms, 
combining a good ratio of transmitted torque, overall dimensions, and weight. The main 
advantage is the wide range of gear ratios. Gear reducers are most commonly used in modern 
developing industries: CNC machines, automatic lines, transport machinery, and robotics. The 
efficiency coefficient of such a transmission reaches 90%.

Due to the reduction in the number of stages in the EC gear reducer, fewer bearings are used, 
which increases its efficiency. The developed gear reducer has a service life one and a half times 
longer. The driven wheel of the EC has a profile enveloping a family of circles in different phases 
of engagement and represents a cycloidal curve, which is an equidistant. Figure 1 shows the 
diagram of the EC transmission. 

Figure 1. EC transmission: 1 – driving shaft-eccentric, 2 – bearings, 3 – left stand, 4 – right stand,
 5 – driven wheel, 6 – output shaft

The profile of the driving wheel in the end section is a circle eccentrically displaced from 
the axis of rotation of the wheel by a distance ε. The curvilinear helical profile of the wheel is 
formed by sequentially and continuously displacing this circle along the axis of the wheel with 
simultaneous rotation around the same axis.

Geometric Model of the Mechanism

The geometric model of the EC mechanism is shown in Figure 2. The tooth profile of the 
smaller wheel 1 in the end section is a circle D with a diameter d=2r, eccentrically displaced 
by a distance ε relative to the axis of rotation of the wheel ОО1. The curved profile of wheel 1 is 
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The profile of the driving wheel in the end section is a circle eccentrically displaced 
from the axis of rotation of the wheel by a distance ε. The curvilinear helical profile of 
the wheel is formed by sequentially and continuously displacing this circle along the 
axis of the wheel with simultaneous rotation around the same axis.

Geometric Model of the Mechanism
The geometric model of the EC mechanism is shown in Figure 2. The tooth profile 

of the smaller wheel 1 in the end section is a circle D with a diameter d=2r, eccentrically 
displaced by a distance ε relative to the axis of rotation of the wheel ОО1. The curved 
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formed by the sequential and continuous displacement of this circle along the axis of wheel ОО1 
with simultaneous rotation around this same axis. Thus, the tooth surface of wheel 1 forms a 
helical eccentric P.

The tooth profile of the larger wheel 2 in the end section is conjugated with the eccentrically 
displaced circle D of wheel 1. The profile is constructed as the envelope of a family of eccentric 
circles in different phases of engagement and represents a cycloidal curve G, which is an 
equidistant of the epicycloid [3]. The helical curved surface of the teeth of wheel 2 is formed 
similarly to the tooth surface of wheel 1 by the sequential and continuous rotation of the cycloidal 
end sections of the wheel around the axis СС1 of wheel 2. The helical surfaces of wheels 1 and 2 
have opposite directions of rotation.

The general view of the reducer with plane P perpendicular to the axes of the wheels is shown 
in Fig. 2, and a fragment of the contact area of the worm element with the larger wheel is shown 
in Fig. 2. The toothed profile of the smaller wheel 1 in the end section is a circle D of diameter 
d=2r, eccentrically shifted by a distance ε relative to the axis of rotation of the wheel OO1. The 
curvilinear profile of the wheel 1 is formed by sequentially and continuously displacing this 
circle along the axis of the wheel OO1 with simultaneous rotation around the same axis. Thus, 
the tooth surface of wheel 1 forms a helical eccentric P.

Figure 2. Diagram of the eccentric cycloid meshing

Determination of EC Transmission Parameters
The input parameters for determining the geometric dimensions of the EC gearing of the 
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Determination of EC Transmission Parameters
The input parameters for determining the geometric dimensions of the EC gearing 

of the reducer for the gantry crane movement mechanism were taken according to the 
technical specifications: 

Gear ratio 9i =
Torque Tmax=2500 N·m
Based on the fundamental equations of the epicycloid (1), (2), the parameters of 

the driving and driven wheels were determined.
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reducer for the gantry crane movement mechanism were taken according to the technical 
specifications:

Gear ratio i =9
Torque Tmax=2500 N·m
Based on the fundamental equations of the epicycloid (1), (2), the parameters of the driving 

and driven wheels were determined.

(1)

(2)

Wheel diameter R=150 mm
Number of teeth of the larger wheel n=16
Profile diameter of the smaller wheel r=40 mm
Eccentricity of the eccentric shaft e=5 mm
Based on the calculated geometric parameters, engineering documentation for the EC 

reducer was created (Figure 3). 

Figure 3. 3D model of the EC reducer

The designed reducer is a single-stage cylindrical reducer with a mass of 41 kg. The reducer 
is intended to replace a cylindrical two-stage involute reducer, which has a mass of 96 kg.
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EC reducer was created (Figure 3).

Figure 3. 3D model of the EC reducer

The designed reducer is a single-stage cylindrical reducer with a mass of 41 kg. 
The reducer is intended to replace a cylindrical two-stage involute reducer, which has 
a mass of 96 kg.

Mathematical model of contact in the new evolvent-cycloid transmission.
As seen from the construction scheme (Figure 2) of the tooth surfaces of wheels 1 

and 2, the tooth profile of wheel 1 in any end section is represented by the eccentrically 
displaced circle D, while the profile of wheel 2 is represented by the rotated cycloidal 
curve G. In any end section, circle D has a contact point A with the corresponding 
cycloidal curve. The helical tooth of wheel 1 simultaneously has multiple contact 
points with the helical cycloidal tooth of wheel 2. These points form a continuous 
helical (with variable curvature) contact line АА2А.

The coordinates of the contact point A of circle D with the cycloidal curve G are 
found as the sum of the radius vector of the center of circle D and the vector directed 
along the normal to this circle at the contact point, having a length equal to the radius 
of circle D. To find this normal, it is not necessary to resort to differentiation – it is 
sufficient to apply the property of cycloidal curves: the normal at an arbitrary point of 

 

(45 5) cos 2 cos (45 5) 2
5
uX uπ π = + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ 

 
                                                                                      

(1)
(45 5) sin 2 sin (45 5) 2

5
uY uπ π = + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ 

 
                                                                           (2)                                                                                                                                                                                                                                                      

Based on the calculation results:
Wheel diameter R=150mm
Number of teeth of the larger wheel n=16

Profile diameter of the smaller wheel r=40 mm
Eccentricity of the eccentric shaft e=5 mm

Based on the calculated geometric parameters, engineering documentation for the 
EC reducer was created (Figure 3).

Figure 3. 3D model of the EC reducer

The designed reducer is a single-stage cylindrical reducer with a mass of 41 kg. 
The reducer is intended to replace a cylindrical two-stage involute reducer, which has 
a mass of 96 kg.

Mathematical model of contact in the new evolvent-cycloid transmission.
As seen from the construction scheme (Figure 2) of the tooth surfaces of wheels 1 

and 2, the tooth profile of wheel 1 in any end section is represented by the eccentrically 
displaced circle D, while the profile of wheel 2 is represented by the rotated cycloidal 
curve G. In any end section, circle D has a contact point A with the corresponding 
cycloidal curve. The helical tooth of wheel 1 simultaneously has multiple contact 
points with the helical cycloidal tooth of wheel 2. These points form a continuous 
helical (with variable curvature) contact line АА2А.

The coordinates of the contact point A of circle D with the cycloidal curve G are 
found as the sum of the radius vector of the center of circle D and the vector directed 
along the normal to this circle at the contact point, having a length equal to the radius 
of circle D. To find this normal, it is not necessary to resort to differentiation – it is 
sufficient to apply the property of cycloidal curves: the normal at an arbitrary point of 

 

(45 5) cos 2 cos (45 5) 2
5
uX uπ π = + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ 

 
                                                                                      

(1)
(45 5) sin 2 sin (45 5) 2

5
uY uπ π = + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ 

 
                                                                           (2)                                                                                                                                                                                                                                                      

Based on the calculation results:
Wheel diameter R=150mm
Number of teeth of the larger wheel n=16

Profile diameter of the smaller wheel r=40 mm
Eccentricity of the eccentric shaft e=5 mm

Based on the calculated geometric parameters, engineering documentation for the 
EC reducer was created (Figure 3).

Figure 3. 3D model of the EC reducer

The designed reducer is a single-stage cylindrical reducer with a mass of 41 kg. 
The reducer is intended to replace a cylindrical two-stage involute reducer, which has 
a mass of 96 kg.

Mathematical model of contact in the new evolvent-cycloid transmission.
As seen from the construction scheme (Figure 2) of the tooth surfaces of wheels 1 

and 2, the tooth profile of wheel 1 in any end section is represented by the eccentrically 
displaced circle D, while the profile of wheel 2 is represented by the rotated cycloidal 
curve G. In any end section, circle D has a contact point A with the corresponding 
cycloidal curve. The helical tooth of wheel 1 simultaneously has multiple contact 
points with the helical cycloidal tooth of wheel 2. These points form a continuous 
helical (with variable curvature) contact line АА2А.

The coordinates of the contact point A of circle D with the cycloidal curve G are 
found as the sum of the radius vector of the center of circle D and the vector directed 
along the normal to this circle at the contact point, having a length equal to the radius 
of circle D. To find this normal, it is not necessary to resort to differentiation – it is 
sufficient to apply the property of cycloidal curves: the normal at an arbitrary point of 



Л.Н. Гумилев атындағы Еуразия ұлттық университетінің ХАБАРШЫСЫ.
Техникалық ғылымдар және технологиялар сериясы

ISSN: 2616-7263. eISSN: 2663-1261 

194 №3(148)/ 2024

M.E. Isametova, N.S. Seiitkazy, N.D. Saidinbayeva, G.S. Abilezova

Mathematical model of contact in the new evolvent-cycloid transmission.
As seen from the construction scheme (Figure 2) of the tooth surfaces of wheels 1 and 2, the 

tooth profile of wheel 1 in any end section is represented by the eccentrically displaced circle D, 
while the profile of wheel 2 is represented by the rotated cycloidal curve G. In any end section, 
circle D has a contact point A with the corresponding cycloidal curve. The helical tooth of wheel 
1 simultaneously has multiple contact points with the helical cycloidal tooth of wheel 2. These 
points form a continuous helical (with variable curvature) contact line АА2А.

The coordinates of the contact point A of circle D with the cycloidal curve G are found as 
the sum of the radius vector of the center of circle D and the vector directed along the normal 
to this circle at the contact point, having a length equal to the radius of circle D. To find this 
normal, it is not necessary to resort to differentiation – it is sufficient to apply the property of 
cycloidal curves: the normal at an arbitrary point of such a curve passes through the pole (the 
point of tangency of the rolling circles used to generate the initial cycloidal curve). The line 
АА2А4 is constructed using the interpolation function of the contact point array for adjacent 
end sections, built into the MathCad package. The resulting vector function Kϑ(ϑ) (ϑ=0,…, 2π 
–  the angle of rotation of circle D around the axis OO1, which produces the corresponding end 
section) of the points on line АА2А4 allows differentiation using the symbolic processor of the 
MathCad package to determine the curvature at each point of this line at any given time. This 
curvature turns out to be variable, i.e., the contact line is not helical.

According to Hertz's theory, the deformation state of contact between two cylindrical bodies 
of radii R1 and R2 arising from normal forces Р, is shown in Figure 2[7-8].

When both points А1 and А2 of the bodies shift toward point О along the z – axis by distances 
𝛿𝛿1 and 𝛿𝛿2 respectively, the average contact pressure рm is determined by the equation:

(3)

Thus, the contact pressure and the stresses it induces increase proportionally to the linear 
size of the contact area. For cylinder contacts, the load per unit length of the axis is:

  (4)

Then, from equation (5), we derive:

  (5)

The dimensions of the semi-axes of the contact ellipse can be determined by the expressions:
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Here, R1 and R2 are the radii of the cylinder, k1 and k2   are constants determined by the 
equations:
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From equations (5) – (6), it follows that the width of the contact ellipse and the contact 
pressure increase as the square root of the applied load [10-13].

Hertz's theory defines the regularities of contact stresses and deformations as the compressive 
load increases and determines the influence of the surface curvatures and the elasticity moduli 
of the contacting bodies [7].
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From equations (5) - (6), it follows that the width of the contact ellipse and the 
contact pressure increase as the square root of the applied load [10-13].

Hertz's theory defines the regularities of contact stresses and deformations as the 
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radius of curvature of the line on the larger tooth 2, which is obtained by the end section 
corresponding to the contact point, i.e., at a given angle υ. This line is the result of 
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From equations (5) - (6), it follows that the width of the contact ellipse and the 
contact pressure increase as the square root of the applied load [10-13].

Hertz's theory defines the regularities of contact stresses and deformations as the 
compressive load increases and determines the influence of the surface curvatures and 
the elasticity moduli of the contacting bodies [7].

To find the contact stresses at the points along the line , it is necessary to know the 
radius of curvature of the line on the larger tooth 2, which is obtained by the end section 
corresponding to the contact point, i.e., at a given angle υ. This line is the result of 
rotating the initial line G by an angle:

(11)

where 𝛿𝛿𝛿𝛿 is the rotation angle of the generator. The radii of curvature are calculated 
by the usual formula:

                                             
(12)

where:

                                                                                                       
(13)

and 𝑋𝑋𝑋𝑋�𝜑𝜑𝜑𝜑(𝑣𝑣𝑣𝑣, 𝛿𝛿𝛿𝛿)�,𝑌𝑌𝑌𝑌(𝜑𝜑𝜑𝜑(𝑣𝑣𝑣𝑣, 𝛿𝛿𝛿𝛿)) – are the coordinates of the contact point on the 
corresponding equidistant. 

The formula for calculating the forces at the contact points at the rotor rotation 
angle 𝛿𝛿𝛿𝛿 takes the integral form:

2

( ) ,
z
ϑ δ− +

3
' 2 2 2

' ''

( ( ( , )) '( ( , )) )( , ) ,
( ( , )) ''( ( , )) ( ( , )) '( ( , ))

X YR
X Y X Y

ϕ ϑ δ ϕ ϑ δϑ δ
ϕ ϑ δ ϕ ϑ δ ϕ ϑ δ ϕ ϑ δ

+
=

−

2

2

1( , ) ( ),z
z

ϕ ϑ δ ϑ δ+
= +



Л.Н. Гумилев атындағы Еуразия ұлттық университетінің ХАБАРШЫСЫ.
Техникалық ғылымдар және технологиялар сериясы

ISSN: 2616-7263. eISSN: 2663-1261 

196 №3(148)/ 2024

M.E. Isametova, N.S. Seiitkazy, N.D. Saidinbayeva, G.S. Abilezova

where 𝛿 is the rotation angle of the generator. The radii of curvature are calculated by the 
usual formula:
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equidistant.

The formula for calculating the forces at the contact points at the rotor rotation angle 𝛿 takes 
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where M is the input torque on the generator, and 𝛾(𝑣,𝛿) is the angle between the radius 
vector of the contact point.

The loading scheme of the teeth in the EC gearing is schematically shown in Figure 4.
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where M is the input torque on the generator, and 𝛾𝛾𝛾𝛾(𝑣𝑣𝑣𝑣, 𝛿𝛿𝛿𝛿) is the angle between the 
radius vector of the contact point.

The loading scheme of the teeth in the EC gearing is schematically shown in 
Figure 4.

Figure 4. Tooth loading schemes

As a result of analytical calculation, the following energy-force parameters of the 
EC reducer were determined:
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2 Torque on the input shaft of the reducer: 4.8T kNm=
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4,025ixF kN=∑

4 Sum of the projections of forces in engagement of the teeth on the y-axis:
2,850.5iyF kN= −∑

5 Electric motor power: 24N kW=

Computer Modeling of Contact in EC Engagement

Thanks to the application of computer technology, the possibilities for calculating 
contact stresses in mechanisms have significantly expanded. The NASTRAN/MARC 
program supports three contact models: node-to-node, node-to-surface, and surface-to-
surface. Each type of model uses different types of contact elements. The finite element 
model recognizes the contact pair by the presence of contact elements that are applied 
to those parts of the model that will be analyzed for interaction. To form a contact pair, 
these elements use the concepts of "target surface" and "contact surface". For 
determining two-dimensional contact pairs, finite elements CONTA and TARGE are 
used, and for three-dimensional contact pairs, CONTA174 and TARGE170 are used.
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As a result of analytical calculation, the following energy-force parameters of the EC reducer 
were determined:

1 Output shaft rotation speed: n=725 rpm
2 Torque on the input shaft of the reducer: T=4.8 kNm
3 Sum of the projections of all forces in engagement of the eccentric and driven wheel teeth 

on the x-axis:
ΣFix=4,025 kN
4 Sum of the projections of forces in engagement of the teeth on the y-axis:
ΣFix=–2,850.5iyFkN
5 Electric motor power: N=24 kW

Computer Modeling of Contact in EC Engagement

Thanks to the application of computer technology, the possibilities for calculating contact 
stresses in mechanisms have significantly expanded. The NASTRAN/MARC program supports 
three contact models: node-to-node, node-to-surface, and surface-to-surface. Each type of 
model uses different types of contact elements. The finite element model recognizes the contact 
pair by the presence of contact elements that are applied to those parts of the model that will 
be analyzed for interaction. To form a contact pair, these elements use the concepts of "target 
surface" and "contact surface". For determining two-dimensional contact pairs, finite elements 
CONTA and TARGE are used, and for three-dimensional contact pairs, CONTA174 and TARGE170 
are used. 

The main steps for performing surface-to-surface contact analysis are outlined below:
Creating a geometric model and meshing;
Designing the contact and target surfaces;
Defining the contact and target surfaces;
Setting real constants;
Setting the necessary boundary conditions and solution options;
Solving the contact problem;
Analyzing the results.Boundary conditions for static analysis and calculation of contact 

stresses are summarized in Table 1.

Table 1. Boundary conditions

№ Parameter Value
1 Material Steel
2 Elastic modulus Е 2.1011Pa
3 Poisson's ratio 0.3
4 Support 1 Hinge with rotation around the model axis
5 Axial force 4.025kN
6 Radial force 2850.5kN
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7 Calculation type Static
8 Output shaft rotation speed n=725 rpm

Using this algorithm, a methodology for solving contact problems based on the finite element 
method in the NASTRAN/MARC software was developed [9]. This methodology was tested on 
contact problems, the solutions of which were obtained by classical mechanics methods.

Findings/Discussion

Analysis of Computer Modeling Results
Choosing the FEA system NASTRAN/PATRAN for strength analysis, we present the schematic 

diagram of the rotor (Figure 3) as a finite element model. The schematic diagram represents 
the elastic-mass characteristics of the mechanical system "rotor-support." There are several 
approaches to creating FEA models [14]. Initially, we create the geometry of the rotor according 
to the working drawings (Figure 5).

Figure 5. 3D model and finite element mesh of the components of the eccentric (EC) reducer

Equivalent stresses and static deflection values of the shaft were obtained as a result of the 
static strength calculation. 

a)                                                                  b)                                                                  c)

Figure 6. Stress and displacement diagrams in the driven wheel of the EC reducer
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stress of max 181MPaσ = and a displacement of 63.16 10ст mδ −= ⋅ , yielding a safety factor 
of 3.2.

The stress analysis diagrams of the reducer frame show a sufficient safety factor. 
According to the diagram (Figure 6c), the maximum stress max 44Mpaσ = and the static 
deflection 62.43 10ст mδ −= ⋅ . The allowable stress for steel is [ ] 450MPaσ− = , resulting in 
a safety factor of 8.3.

Determination of Contact Stresses in Meshing in the NASTRAN/MARC System

Eccentric (EC) transmissions experience significant axial loads, necessitating 
appropriate design of bearing assemblies. These loads lead to high contact pressures 
and significant friction losses, resulting in low efficiency.
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The analysis of the results revealed a sufficient safety factor for the driven wheel. According 
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Eccentric (EC) transmissions experience significant axial loads, necessitating appropriate 
design of bearing assemblies. These loads lead to high contact pressures and significant friction 
losses, resulting in low efficiency.

Contact pressure modeling was performed using the high-level CAD system NASTRAN/
MARC, a nonlinear solver for determining contact parameters between two bodies[7-8]. The 
results in the form of diagrams are presented in Figure 7.

Figure 7. Contact stress diagram

The maximum pressure in the EC contact is 1810 MPa, with the greatest tensile stress on the 
EC wheel being 1342 MPa, and on the EC eccentric 714 MPa. he EC eccentric requires surface 
hardening such as cementation or SHKh15 steel with volumetric strengthening. The complex 
configuration of the eccentric creates a triaxial stress state, which, combined with cyclic loading, 
reduces its service life.

A comparative review of mathematical models of reducers with non-traditional gearing was 
of interest. The inadequacy of the theory in its classical form is confirmed by calculated values 
of p_max, found using various authors' methods. Comparison of transmissions based on key 
parameters is presented in Table 2.
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Table 2. Comparison of transmissions by basic parameters

Measured 
Parameters

Information Sources

Herz Kovalyov 
M.N Makushin M.I. VNIINMAS

H IMASH

maxp , MPa 977
1 5843 9818 4473 5706

*
max

max

σ
σϕσ = 14,0

0 5,50 14,06 6,41 4,60

3
σϕ=ϕF

274
3 167 2783 263 97

From Table 2, it follows that calculated stress values are approximately three times 
higher than the stress max 1810p MPa= observed in EC transmissions. This increase in

maxp corresponds to a decrease in the load capacity of the EC mesh due to contact 
stresses.

Conclusion
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Table 2. Comparison of transmissions by basic parameters

Measured 
Parameters

Information Sources
Herz Kovalyov M.N Makushin M.I. VNIINMASH IMASH
9771 5843 9818 4473 5706

14,00 5,50 14,06 6,41 4,60

2743 167 2783 263 97

From Table 2, it follows that calculated stress values are approximately three times higher 
than the stress  observed in EC transmissions. This increase in   corresponds to a decrease in the 
load capacity of the EC mesh due to contact stresses.

Conclusion

Based on the analysis of static strength and contact stresses, which are the main causes of 
failure in reducers with involute gearings, a mathematical and computer model of a reducer with 
involute-cycloidal gearings has been proposed. Gearings with involute-cycloidal tooth profiles, 
widely used, are expected to become one of the most effective and reliable types of gearings 
used in various mechanical systems. The new type of EC gearing has a high gear ratio with 
minimal dimensions. The teeth have a large effective radius of curvature, increasing contact 
strength, while the tooth shape ensures high bending strength. In our opinion, EC gearing can 
become a serious competitor not only to traditional involute gearing but also to other types of 
gearings currently being developed. They provide high torque transmission accuracy, minimal 
noise and vibration levels, and the ability to transmit large loads in compact sizes.

The material presented in our publication can be used in the design process of reducers, 
transmissions, and other transmission mechanisms used in mining equipment, as a primary or 
additional source of reference information.

The study was carried out with the financial support of the Ministry of Internal Affairs of the 
Republic of Kazakhstan under grant BR18574141 «Comprehensive multi-purpose program to 
improve energy efficiency and resource conservation in energy and mechanical engineering for 
the industry of Kazakhstan».
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Тау-кен техникасының жетегіне арналған дәстүрлі емес ілінісі бар берілісті 
математикалық және компьютерлік модельдеу

Аңдатпа. Заманауи беріліс механикасында беріліс механизмдері жетекші біліктің айналу 
қозғалысын бұрыштық жылдамдықтары мен моменті өзгеретін басқа біліктің айналу 
қозғалысына түрлендіруде шешуші рөл атқарады. Жаңа буын беріліс механизмдерінің оңтайлы 
конструкцияларына қол жеткізу үшін олардың динамикалық өзгерістерінің математикалық 
үлгілерін құру, негізгі компоненттердің қосылу геометриясының компьютерлік модельдеуін 
жүргізу және механизмнің жұмыс процесін визуализациялау қажет. Механикалық беріліс 
қорабында эвольвентті берілістің кеңінен қолданылуына қарамастан, дәстүрлі жүйеден 
артықшылығы бар берілістердің жаңа түрлерін іздеу жалғасуда. Өнеркәсіптің алдында 
тұрған негізгі міндеттерге бір сатылы беріліс коэффициенттерін арттыру, жүк көтергіштігін 
арттыру және стандартты беріліс жетектеріне қарағанда тиімділікті арттыру кіреді. Мақалада 
математикалық және компьютерлік модельдеу нәтижелері келтіріледі, сондай-ақ ЭЦ-ілінісудің 
эвольвенттік берілісімен салыстырмалы сипаттамасы беріледі. Талдамалы есептеу нәтижесінде 
редуктордың ЭЦ-ның энергиялық параметрлері анықталды, баламалы кернеулер және 
беріліс біліктерінің статикалық иілу мәндері алынды. Мақалада ЭЦ ілінісуі бар жаңа беріліс 
элементтерін статикалық есептеу нәтижелері келтірілген, сондай-ақ ілінісуден туындайтын 
байланыс кернеулерін компьютерлік модельдеу алгоритмі келтірілген. Компьютерлік 
модельдеумен айқындалған ЭЦ-дағы түрлі талдамалық әдістемелер мен түйіспелі кернеулер 
бойынша есептелген дәстүрлі эвольвенттік берудегі түйіспелі кернеулерді салыстырмалы 
талдау бойынша қорытындыда берудің жаңа түрінің артықшылықтары және оны тау-кен 
техникасында өткізу тетіктерінде қолдану мүмкіндігі туралы қорытынды жасалады.

Түйін сөздер: эвольвенттік-циклоидтық берілістер, эвольвенттік ілінісу, Новиковтың ілінісуі, 
түйіспелі кернеулер, орталықтан тепкіш күштер.
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Математическое и компьютерное моделирование передачи с нетрадиционным 
зацеплением для привода горной техники

Аннотация. В современной механике передач механизмы передачи играют ключевую роль в 
преобразовании вращательного движения ведущего вала в вращательное движение другого вала 
с изменяющимися угловыми скоростями и крутящим моментом. Для достижения оптимальных 
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конструкций механизмов передачи нового поколения необходимо создавать математические 
модели их динамического поведения, проводить компьютерное моделирование геометрии 
зацепления ключевых компонентов и визуализировать процесс работы механизма. Несмотря на 
широкое использование эвольвентного зацепления в механических передачах, продолжаются 
поиски новых типов зацепления, обладающих преимуществами по сравнению с традиционной 
системой. Основные задачи, стоящие перед отраслью, включают увеличение передаточного 
числа в одной ступени, повышение грузоподъемности и эффективности по сравнению со 
стандартными зубчатыми передачами. В статье приводится результаты математического и 
компьютерного моделирования, а также дается сравнительная характеристика ЭЦ-зацепления с 
эвольвентной передачей. В результате аналитического расчета были определены энергосиловые 
параметры ЭЦ редуктора, получены эквивалентные напряжения и значения статических 
прогибов валов передачи. В статье приведены результаты статического расчета элементов 
новой передачи с ЭЦ зацеплением, а также приведен алгоритм компьютерного моделирования 
контактных напряжений, возникающих в зацеплении. В заключении по сравнительному анализу 
контактных напряжений в традиционной эвольвентной передаче, расчитанных по различным 
аналитическим методикам и контактных напряжений в ЭЦ зацеплении, определенных 
компьютерным моделированием делается вывод о преимуществах нового вида передачи и 
возможности ее применения в передаточных механизмах в горной технике.

Ключевые слова: эвольвентно-циклоидные передачи, эвольвентное зацепление, зацепление 
Новикова, контактные напряжений, центробежные силы.
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